
Harvard School of Engineering and Applied Sciences — Computer Science 152

Type inference; Curry-Howard isomorphism

Lecture 19 Tuesday, April 6, 2010

1 Type inference

In the simply typed lambda calculus, we must explicitly state the type of function arguments: λx :τ. e. This
explicitness makes it possible to type check functions.

Γ, x :τ ` e :τ ′

Γ ` λx :τ. e :τ → τ ′

Suppose we didn’t want to provide type annotations for function arguments. Consider the typing rule
for functions without type annotations.

Γ, x :τ ` e :τ ′

Γ ` λx. e :τ → τ ′

The type-checking algorithm would need to guess or somehow know what type τ to put into the type
context.

Can we still type check our program without these type annotations? For the simply typed lambda cal-
culus (and many of the extensions we have considered so far), the answer is yes: we can infer or reconstruct
the types of a program.

Let’s consider an example to see how this type inference could work.

λa. λb. λc. if a (b+ 1) then b else c

Since the variable b is used in an addition, the type of b must be int. The variable a must be some kind
of function, since it is applied to the expression b+ 1. Since a has a function type, the type of the expression
b+ 1 (i.e., int) must be a’s argument type. Moreover, the result of the function application (a (b+ 1)) is used
as the test of a conditional, so it better be the case that the result type of a is also bool. So the type of a
should be int→ bool. Both branches of a conditional should return values of the same type, so the type of
c must be the same as the type of b, namely int.

We can write the expression with the reconstructed types:

λa : int→ bool. λb : int. λc : int. if a (b+ 1) then b else c

1.1 Constraint-based typing

We now present an algorithm that, when given a typing context Γ and an expression e, produces a set of
constraints—equations between types (including type variables)—that must be satisfied in order for e to be
well-typed in Γ.

We first introduce type variables, which are just placeholders for types. We use X and Y to range over
type variables.

The language we will consider is the lambda calculus with integer constants and addition. We assume
that all function definitions contain a type annotation for the argument, but this type may simply be a type
variable X .

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

τ ::= int | X | τ1 → τ2

Lecture 19 Type inference; Curry-Howard isomorphism

To formally define type inference, we introduce a new typing relation:

Γ ` e :τ | C

Intuitively, if Γ ` e : τ | C, then expression e has type τ provided that every constraint in the set C is
satisfied.

We define the judgment Γ ` e : τ | C with inference rules and axioms. When read from bottom to top,
these inference rules provide a procedure that, given Γ and e, calculates τ and C such that Γ ` e :τ | C.

CT-VAR
Γ ` x :τ | ∅

x :τ ∈ Γ CT-INT
Γ ` n : int | ∅

CT-ADD
Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

Γ ` e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}

CT-ABS
Γ, x :τ1 ` e :τ2 | C

Γ ` λx :τ1. e :τ1 → τ2 | C
CT-APP

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

C ′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ` e1 e2 :X | C ′ X is fresh

Note that we must be careful with the choice of fresh type variables. We have omitted some of the
technical details that ensure the fresh type variables in the rule CT-APP are chosen appropriately.

1.2 Unification

So what does it mean for a set of constraints to be satisfied? To answer this question, we define type substi-
tutions (or just substitutions, when it’s clear from context).

1.2.1 Type substitution

A type substitution is a finite map from type variables to types. For example, we write [X 7→ int, Y 7→
int→ int] for the substitution that maps type variable X to int, and type variable Y to int→ int.

Note that the same variable could occur in both the domain and range of a substitution. In that case,
the intention is that all substitutions are performed simultaneously. For example the substitution [X 7→
int, Y 7→ int→ X] mays Y to int→ int.

More formally, we define substitution of type variables as follows.

σ(X) =

{
τ if X 7→ τ ∈ σ
X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ)→ σ(τ ′)

Note that we don’t need to worry about avoiding variable capture, since there are no constructs in
the language that bind type variables. If we had polymorphic types ∀X. τ from the polymorphic lambda
calculus, we would need to be concerned with this.

Given two substitutions σ and σ′, we write σ ◦ σ′ for the composition of the substitutions: σ ◦ σ′(τ) =
σ(σ′(τ)).

1.2.2 Unification

Constraints are of the form τ = τ ′. We say that a substitution σ unifies constraint τ = τ ′ if σ(τ) = σ(τ ′). We
say that substitution σ satisfies (or unifies) set of constraints C if σ unifies every constraint in C.

Page 2 of 4

Lecture 19 Type inference; Curry-Howard isomorphism

For example, the substitution σ = [X 7→ int, Y 7→ int → int] unifies the constraint X → (X →
int) = int→ Y , since

σ(X → (X → int)) = int→ (int→ int) = σ(int→ Y)

So to solve a set of constraintsC, we need to find a substitution that unifiesC. More specifically, suppose
that Γ ` e :τ | C; a solution for (Γ, e, τ, C) is a pair σ, τ ′) such that σ satisfies C and σ(τ) = τ ′. If there are no
substitutions that satisfy C, then we know that e is not typable.

1.2.3 Unification algorithm

To calculate solutions to constraint sets, we use the idea, due to Hindley and Milner, or using unification to
check that the set of solutions is non-empty, and to find a “best” solution (from which all other solutions
can be easily generated).

The algorithm for unification is defined as follows.

unify(∅) = [] (the empty substitution)
unify({τ = τ ′} ∪ C ′) = if τ = τ ′ then

unify(C ′)

else if τ = X and X not a free variable of τ ′ then
unify(C ′{τ ′/X}) ◦ [X 7→ τ ′]

else if τ ′ = X and X not a free variable of τ then
unify(C ′{τ/X}) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then
unify(C ′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

The check that X is not a free variable of the other type ensures that the algorithm doesn’t produce a
cyclic substitution (e.g., X 7→ X → X), which doesn’t make sense with the finite types that we currently
have.

The unification algorithm always terminates. (How would you go about proving this?) Moreover, it
produces a solution if and only if a solution exists. The solution found is the most general solution, in the
sense that if σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such that σ′ = σ ◦ σ′′.

2 Curry-Howard isomorphism

There is a strong connection between types in programming languages and propositions in intuitionistic
logic. This correspondence was noticed by Haskell Curry and William Howard. It is known as the Curry-
Howard isomorphism, and also as the propositions-as-types correspondence, and proofs-as-programs correspon-
dence.

Intuitionistic logic equates the truth of formula with their provability. That is, for a statement φ to be
true, there must be a proof of φ. The key difference between intuitionistic logic and classical logic is that in
intuitionistic logic, the rule of excluded middle does not apply: it is not true that either φ or ¬φ.

The inference rules and axioms for typing programs are very similar to the inference rules and axioms
for proving formulas in intuitionistic logic. That is, types are like formulas, and programs are like proofs.

For example, suppose we have an expression e1 with type τ1, and expression e2 with type τ2. Think of e1
as a proof of some logical formulas τ1, and e2 as a proof of some logical formulas τ2. What would constitute
a proof of the formulas τ1 ∧ τ2? We would need a proof of τ1 and a proof of τ2. Say we put these proofs
together in a pair: (e1, e2). This is a program with type τ1× τ2. That is, the product type τ1× τ2 corresponds
to conjunction!

Page 3 of 4

Lecture 19 Type inference; Curry-Howard isomorphism

Similarly, how do we prove τ1 ∨ τ2? Under intuitionistic logic, we need either a proof of τ1, or a proof of
τ2. Thinking about programs and types, this means we need either an expression of type τ1 or an expression
of type τ2. We have a construct that meets this description: the sum type τ1 + τ2 corresponds to disjunction!

What does the function type τ1 → τ2 correspond to? We can think of a function of type τ1 → τ2 as
taking an expression of type τ1 and producing something of type τ2, which by the Curry-Howard isomor-
phism, means taking a proof of proposition τ1 and producing a proof of proposition τ2. This corresponds
to implication: if τ1 is true, then τ2 is true.

The polymorphic lambda calculus introduced universal quantification over types: ∀X. τ . As the nota-
tion suggests, this corresponds to universal quantification in intuitionistic logic. To prove formula ∀X. τ ,
we would need a way to prove τ{τ ′/X} for all propositions τ ′. This is what the expression ΛX. e gives us:
for any type τ ′, the type of the expression (ΛX. e) [τ ′] is τ{τ ′/X}, where τ is the type of e.

So under the Curry-Howard isomorphism, expression e of type τ is a proof of proposition τ . If we have
a proposition τ that is not true, then there is no proof for τ , i.e., there is no expression e of type τ . A type
that has no expressions with that type is called an uninhabited type. There are many uninhabited types, such
as ∀X. X . Uninhabited types correspond to false formulas. Inhabited types are theorems.

2.1 Examples

Consider the formula
∀φ1, φ2, φ3. ((φ1 ⇒ φ2) ∧ (φ2 ⇒ φ3))⇒ (φ1 ⇒ φ3).

The type corresponding to this formula is

∀X,Y, Z. ((X → Y)× (Y → Z))→ (X → Z).

This formula is a tautology. So there is a proof of the formula. By the Curry-Howard isomorphism, there
should be an expression with the type ∀X,Y, Z. ((X → Y)× (Y → Z))→ (X → Z). Indeed, the following
is an expression with the appropriate type.

ΛX,Y, Z. λf : (X → Y)× (Y → Z). λx :X. (#2 f) ((#1 f) x)

We saw earlier in the course that we can curry a function. That is, given a function of type (τ1×τ2)→ τ3,
we can give a function of type τ1 → τ2 → τ3. We can do this with a function. That is, the expression

λf : (τ1 × τ2)→ τ3. λx :τ1. λy :τ2. f (x, y)

has type
((τ1 × τ2)→ τ3)→ (τ1 → τ2 → τ3).

The corresponding logical formula is (φ1 ∧ φ2 ⇒ φ3)→ (φ1 ⇒ (φ2 ⇒ φ3)), which is a tautology.

2.2 Negation and continuations

In intuitionistic logic,if ¬τ is true, then τ is false, meaning there is no proof of τ .We can think of ¬τ as being
equivalent to τ ⇒ False, or, as the type τ → ⊥, where ⊥ is some uninhabited type such as ∀X. X . That is,
if ¬τ is true, then if you give me a proof of τ , I can give you a proof of False.

We have seen functions that take an argument, and never produce a result: continuations. Continuations
can be thought of as corresponding to negation.

Suppose that we have a special type Answer that is the return type of continuations. That is, a continu-
ation that takes an argument of type τ has the type τ → Answer. Assume further that we have no values
of type Answer, i.e., Answer is an uninhabited type.

A continuation-passing style translation of an expression e of type τ , CPS[[e]], has the form λk :τ → Answer. . . . ,
where k is a continuation, and the translation will evaluate e, and give the result to k. Thus, the type of
CPS[[e]] is (τ → Answer) → Answer. Under the Curry-Howard isomorphism, this type corresponds to
(τ ⇒ False) ⇒ False, or, equivalently, ¬(¬τ)), the double negation of τ , which is equivalent to τ . CPS
translation converts an expression of type τ to an expression of type (τ → Answer) → Answer, which is
equivalent to τ !

Page 4 of 4

