
Harvard School of Engineering and Applied Sciences — Computer Science 152

Object-oriented concepts

Lecture 22 Thursday, April 15, 2010

See Mitchell Chapter 10 for content covered in the first part of lecture. An electronic copy of the textbook
is available through the Harvard Library website. See the course web page for details.

1 Object encodings

We’ve just informally described object-oriented concepts. How do these concepts relate to language features
and mechanisms that we have already examined during this course?

1.1 Records

Records provide both dynamic lookup and subtyping. For dynamic lookup, given value v of record type,
the expression v.l will evaluate to a value determined by v, not by the record type. If v.l is a function, then
this is like dynamic dispatch: the code to invoke depends on the object v.

Moreover, we defined subtyping on record types, which permits both reuse and extension: code that
expects a value of type τ can be re-used with a value of any subtype of τ ; new subtypes can be created,
allowing code to be extended.

Recursive records allow us to express records that can perform functional updates.
For example, consider a representation of a 2 dimensional point, which has a method to move the point

in one dimension.

letrec new � λi. λj. fix this. t x � i, y � j,mvx � λd.new pthis.x � dq this.y u
in pnew 0 0q.mvx 10

In this example, we use a recursive function new to construct a record value. The record contains fields
x and y, which record the point’s coordinates, and a method mvx, which takes a number d as input, and re-
turns a point that is d units to the right of the original point. In order to construct the new point, the method
mvx calls the function new, and gives it the original x coordinate plus d, and the original y coordinate. To
access the original coordinates, the method mvx must access the fields x and y of the record of which it is a
field; we achieve this by using a fix point operator on the record, with the variable name this being used to
refer (recursively) to the record.

1.2 Existential types

Existential types can be used to enforce abstraction and information hiding. We saw this last lecture, when
we considered a simple module mechanism based on existential types, which allowed the module to export
an interface that abstracted the implementation details.

1.3 Other encodings

It is possible to combine recursive records and existential types: see “Comparing Object Encodings”, by
Bruce, Cardelli, and Pierce, Information and Computation 155(1/2):108–133, 1999. However, rather than
encoding objects on top of the lambda calculus, it is possible to directly define object calculi, simple lan-
guages that serve as a foundation for object-oriented languages (A Theory of Objects, by Abadi and Cardelli,
Springer 1996). We now consider a simple object calculus.

Lecture 22 Object-oriented concepts

2 The ς calculus

We present the sigma calculus, a pure untyped object calculus, from A Theory of Objects, by Abadi and
Cardelli.

The syntax of the language is given by the following grammar.

e ::� x | rli � ςxi. e
iP1..n
i s | e.l | e1.lØ ςx. e2

v ::� rli � ςxi. e
iP1..n
i s

The expression x is a variable; the expression rli � ςxi. e
iP1..n
i s is an object with n methods, names

l1, .., , ln, with each name distinct. A method is written ςx. e, where the argument x is the self parameter
(i.e., it will only be replaced with the object that the method is part of), and e is the method body. The
expression v.l is method invocation, invoking method l on the object v. Finally, v.l Ø ςx. e updates the
method l of object o with method ςx. e.

Note that the order of methods in an object does not matter. Also, we can model fields as ςx. v, where v
doesn’t mention x. For example, if we had integers, we could write ςx. 42. Indeed, we will write e1.l :� e2
as shorthand for e1.lØ ςy. e2 for some y R FV pe2q.

We define a large step operational semantics for the ς calculus. There are just three axioms and rules.

OBJECT
vù v

SELECT
eù v v � rli � ςxi. e

iP1..n
i s bjtv{xjuù v1

e.lj ù v1
j P 1..n

UPDATE
e1ù rli � ςxi. e

iP1..n
i s

e1.lj Ø ςx. e2ù rlj � ςx. e2, li � ςxi. e
iPp1..nq�tju
i s

j P 1..n

Capture avoiding substitution is defined in a straightforward way, given that ςx. e binds variable x in e.

ςy. etv{xu � ςy1. ety1{yutv{xu for y1 R FV pςy. eq Y FV pvq Y txu

xtv{xu � v

ytv{xu � y if y � x

rli � ςxi. e
iP1..n
i stv{xu � rli � pςxi. eiqtv{xu

iPp1..nq
s

pe.lqtv{xu � etv{xu.l

pe1.lØ ςx. e2qtv{xu � e1tv{xu.lØ pςx. e2qtv{xu

The sigma calculus is as expressive as the lambda calculus: we can translate from the lambda calculus
as follows.

rrxss � x

rrλx. ess � r arg � ςx. x.arg, val � ςx. prresstx.arg{xuq s

rre1 e2ss � prre1ss.arg :� rre2ssq.val

The following example program in the sigma calculus is intended to emulate a calculator. (We use
lambda expressions in this example, since lambda expressions can be encoded.)

calculator � rarg � 0.0,

acc � 0.0,

enter � ςs. λn. s.arg :� n,

add � ςs. ps.acc � s.equalsq.equalsØ ςs1. s1.acc� s1.arg,

equals � ςs. s.args

Page 2 of 3

Lecture 22 Object-oriented concepts

We can use this calculator in the following ways.

calculator.enterp5.0q.equalsù 5.0

calculator.enterp5.0q.add.enterp3.5q.equalsù 8.5

calculator.enterp5.0q.add.add.equalsù 15.0

Page 3 of 3

