Large-step semantics; IMP: an imperative language

Lecture 3

Tuesday, February 5, 2013

1 Large-step semantics

So far we have defined the small step evaluation relation $\longrightarrow \subseteq$ Config \times Config, and used its transitive and reflexive closure \longrightarrow^{*} to describe the execution of multiple steps of evaluation. In particular, if $\langle e, \sigma\rangle$ is some start configuration, and $\left\langle n, \sigma^{\prime}\right\rangle$ is a final configuration, the evaluation $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ shows that by executing expression e starting with the store σ, we get the result n, and the final store σ^{\prime}.

Large-step semantics is an alternative way to specify the operational semantics of a language. Large-step semantics directly give the final result.

We'll use the same configurations as before, but define a large step evaluation relation:

$$
\Downarrow \subseteq \operatorname{Exp} \times \text { Store } \times \text { Int } \times \text { Store }
$$

We write $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$ to mean that $\left(e, \sigma, n, \sigma^{\prime}\right) \in \Downarrow$. In other words, expression e with store σ evaluates in one big step directly to integer n, and final store σ^{\prime}.

The large step semantics boils down to defining the relation \Downarrow. We use inference rules to inductively define the relation \Downarrow, similar to how we specified the small-step operational semantics \longrightarrow.

$$
\operatorname{INT}_{\text {LARGE }} \frac{\operatorname{VAR}_{\text {LARGE }} \frac{}{\langle n, \sigma\rangle \Downarrow\langle n, \sigma\rangle} \quad\langle x, \sigma\langle n, \sigma\rangle}{} \text { where } \sigma(x)=n
$$

$\operatorname{ADD}_{\text {LaRGE }} \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle \quad\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}{\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle}$ where n is the sum of n_{1} and n_{2}

$$
\begin{gathered}
\operatorname{MUL}_{\text {LARGE }} \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle \quad\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}{\left\langle e_{1} \times e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle} \text { where } n \text { is the product of } n_{1} \text { and } n_{2} \\
\operatorname{ASG}_{\text {LaRGE }} \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle \quad\left\langle e_{2}, \sigma^{\prime \prime}\left[x \mapsto n_{1}\right]\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}{\left\langle x:=e_{1} ; e_{2}, \sigma\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}
\end{gathered}
$$

To see how we use these rules, here is a proof tree that shows that \langle foo $:=3$; foo \times bar, $\sigma\rangle \Downarrow\left\langle 21, \sigma^{\prime}\right\rangle$ for a store σ such that σ (bar) $=7$, and $\sigma^{\prime}=\sigma[\mathrm{foo} \mapsto 3]$.

A closer look to this structure reveals the relation between small step and large-step evaluation: a depthfirst traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

2 Equivalence of semantics

So far, we have specified the semantics of our language of arithmetic expressions using two different sets of rules: small-step and large-step. Are they expressing the same meaning of arithmetic expressions? Can we show that they express the same thing?
Theorem (Equivalence of semantics). For all expressions e, stores σ, and integers n, we have:

$$
\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longleftrightarrow\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle
$$

Proof sketch.
$\bullet \Longrightarrow$. We want to prove that the following property P holds for all expressions $e \in$ Exp.

$$
P(e)=\forall \sigma, \sigma^{\prime} \in \text { Store. , } \forall n \in \text { Int. }\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle
$$

We proceed by structural induction on expressions e. We have to consider each of the possible axioms and inference rules for constructing an expression.

- Case $e=x$.

Here, we are considering the case where the expression e is equal to some variable x. Assume that $\langle x, \sigma\rangle \Downarrow\langle n, \sigma\rangle$. That means that there is some derivation using the axioms and inference rules of the large-step operational semantics, whose conclusion is $\langle x, \sigma\rangle \Downarrow\langle n, \sigma\rangle$. There is only one rule whose conclusion could look like this, the rule $\operatorname{Var}_{\text {Large }}$. That rule requires that $n=\sigma(x)$.
Since $n=\sigma(x)$ we know that $\langle x, \sigma\rangle \longrightarrow\langle n, \sigma\rangle$ also holds, by using the small-step axiom VAR. So we can conclude that $\langle x, \sigma\rangle \longrightarrow^{*}\langle n, \sigma\rangle$ holds, which is what we needed to show.

- Case $e=n$.

Here, we are consider the case where expression e is equal to some integer n. But then $\langle n, \sigma\rangle \longrightarrow^{*}$ $\langle n, \sigma\rangle$ holds trivially because of reflexivity of \longrightarrow^{*}.

- Case $e=e_{1}+e_{2}$.

This is an inductive case. We want to prove that if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ hold, then $P(e)$ holds too. Let's write out $P\left(e_{1}\right), P\left(e_{2}\right)$, and $P(e)$ explicitly.

$$
\begin{aligned}
P\left(e_{1}\right) & =\forall n, \sigma, \sigma^{\prime}:\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\left\langle e_{1}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle \\
P\left(e_{2}\right) & =\forall n, \sigma, \sigma^{\prime}:\left\langle e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\left\langle e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle \\
P(e) & =\forall n, \sigma, \sigma^{\prime}:\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle
\end{aligned}
$$

Let's assume that $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ hold. Assume that we have values for σ, σ^{\prime} and n such that $\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. We need to show that $\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$.
We assumed that $\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. This means that there is some derivation whose conclusion is $\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. By looking at the large-step semantic rules, we see that only one rule could possible have a conclusion of this form: the rule Add $_{\text {Large }}$. So that means that the last rule use in the derivation was Add $_{\text {Large }}$. But in order to use the rule Add $_{\text {Large, }}$, it must be the case that $\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$ and $\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle$ hold for some n_{1} and n_{2} such that $n=n_{1}+n_{2}$ (i.e., there is a derivation whose conclusion is $\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$ and a derication whose conclusion is $\left.\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle\right)$.
Using the inductive hypothesis $P\left(e_{1}\right)$, since $\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$, we must have $\left\langle e_{1}, \sigma\right\rangle \longrightarrow{ }^{*}\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$. Similarly, by $P\left(e_{2}\right)$, we have $\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \longrightarrow^{*}\left\langle n_{2}, \sigma\right\rangle$. By Lemma 1 below, we have

$$
\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1}+e_{2}, \sigma^{\prime \prime}\right\rangle
$$

and by another application of Lemma 1 we have

$$
\left\langle n_{1}+e_{2}, \sigma^{\prime \prime}\right\rangle \longrightarrow \longrightarrow^{*}\left\langle n_{1}+n_{2}, \sigma^{\prime}\right\rangle
$$

and by the rule ADD we have

$$
\left\langle n_{1}+n_{2}, \sigma^{\prime}\right\rangle \longrightarrow\left\langle n, \sigma^{\prime}\right\rangle .
$$

Thus, we have $\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$, which proves this case.

- Case $e=e_{1} \times e_{2}$. Similar to the case $e=e_{1}+e_{2}$ above.
- Case $e=x:=e_{1} ; e_{2}$. Omitted. Try it as an exercise.
$\bullet \Longleftarrow$. We proceed by mathematical induction on the number of steps $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$.
- Base case. If $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ in zero steps, then we must have $e=n$ and $\sigma^{\prime}=\sigma$. Then, $\langle n, \sigma\rangle \Downarrow\langle n, \sigma\rangle$ by the large-step operational semantics rule $\mathrm{INT}_{\text {LaRGE }}$.
- Inductive case. Assume that $\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$, and that (the inductive hypothesis) $\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. That is, $\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ takes m steps, and we assume that the property holds for it $\left(\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle\right)$, and we are considering $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$, which takes $m+1$ steps. We need to show that $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. This follows immediately from Lemma 2 below.

Lemma 1. If $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ then for all n_{1}, e_{2} the following hold.

- $\left\langle e+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n+e_{2}, \sigma^{\prime}\right\rangle$
- $\left\langle e \times e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n \times e_{2}, \sigma^{\prime}\right\rangle$
- $\left\langle n_{1}+e, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1}+n, \sigma^{\prime}\right\rangle$
- $\left\langle n_{1} \times e, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1} \times n, \sigma^{\prime}\right\rangle$

Proof. By (mathematical) induction on the number of evaluation steps in \longrightarrow^{*}.
Lemma 2. For all e, e^{\prime}, σ, and n, if $\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime \prime}\right\rangle$ and $\left\langle e^{\prime}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$, then $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$.

3 IMP: a simple imperative language

We shall now consider a more realistic programming language, one where we can assign values to variables and execute control constructs such as if and while. The syntax for this simple imperative language, called IMP, is as follows:

arithmetic expressions	$a \in$ Aexp	$a::=x\|n\| a_{1}+a_{2} \mid a_{1} \times a_{2}$
boolean expressions	$b \in \mathbf{B e x p}$	$b::=$ true \mid false $\mid a_{1}<a_{2}$
commands	$c \in \mathbf{C o m}$	$c::=$ skip $\|x:=a\| c_{1} ; c_{2}$
		\mid if b then c_{1} else c_{2}
		\mid while b do c

3.1 Small-step operational semantics

We'll first give a small-step operational semantics for IMP. The configurations in this language are of the form $\langle c, \sigma\rangle,\langle b, \sigma\rangle$, and $\langle a, \sigma\rangle$, where σ is a store. The final configurations are of the form $\langle\mathbf{s k i p}, \sigma\rangle,\langle\boldsymbol{t r u e}, \sigma\rangle$, \langle false, $\sigma\rangle$, and $\langle n, \sigma\rangle$. There are three different small-step operational semantics relations, one each for commands, boolean expressions, and arithmetic expressions.

$$
\begin{aligned}
& \longrightarrow_{\text {Com }} \subseteq \text { Com } \times \text { Store } \times \text { Com } \times \text { Store } \\
& \longrightarrow_{\text {Bexp }} \subseteq \text { Bexp } \times \text { Store } \times \text { Bexp } \times \text { Store } \\
& \longrightarrow_{\text {Aexp }} \subseteq \text { Aexp } \times \text { Store } \times \text { Aexp } \times \text { Store }
\end{aligned}
$$

For brevity, we will overload the symbol \longrightarrow and use it to refer to all of these relations. Which relation is being used will be clear from context.

The evaluation rules for arithmetic and boolean expressions are similar to the ones we've seen before. However, note that since the arithmetic expressions no longer contain assignment, arithmetic and boolean expressions can not update the store.

Arithmetic expressions

$$
\begin{aligned}
& \overline{\langle x, \sigma\rangle \longrightarrow\langle n, \sigma\rangle} \text { where } n=\sigma(x) \\
& \frac{\left\langle e_{1}, \sigma\right\rangle \longrightarrow\left\langle e_{1}^{\prime}, \sigma\right\rangle}{\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow\left\langle e_{1}^{\prime}+e_{2}, \sigma\right\rangle} \quad \frac{\left\langle e_{2}, \sigma\right\rangle \longrightarrow\left\langle e_{2}^{\prime}, \sigma\right\rangle}{\left\langle n+e_{2}, \sigma\right\rangle \longrightarrow\left\langle n+e_{2}^{\prime}, \sigma\right\rangle} \quad \frac{}{\langle n+m, \sigma\rangle \longrightarrow\langle p, \sigma\rangle} \text { where } p=n+m \\
& \frac{\left\langle e_{1}, \sigma\right\rangle \longrightarrow\left\langle e_{1}^{\prime}, \sigma\right\rangle}{\left\langle e_{1} \times e_{2}, \sigma\right\rangle \longrightarrow\left\langle e_{1}^{\prime} \times e_{2}, \sigma\right\rangle} \quad \frac{\left\langle e_{2}, \sigma\right\rangle \longrightarrow\left\langle e_{2}^{\prime}, \sigma\right\rangle}{\left\langle n \times e_{2}, \sigma\right\rangle \longrightarrow\left\langle n \times e_{2}^{\prime}, \sigma\right\rangle} \quad \frac{}{\langle n \times m, \sigma\rangle \longrightarrow\langle p, \sigma\rangle} \text { where } p=n \times m
\end{aligned}
$$

Boolean expressions

$$
\frac{\left\langle a_{1}, \sigma\right\rangle \longrightarrow\left\langle a_{1}^{\prime}, \sigma\right\rangle}{\left\langle a_{1}\left\langle a_{2}, \sigma\right\rangle \longrightarrow\left\langle a_{1}^{\prime}<a_{2}, \sigma\right\rangle\right.} \quad \frac{\left\langle a_{2}, \sigma\right\rangle \longrightarrow\left\langle a_{2}^{\prime}, \sigma\right\rangle}{\left\langle n<a_{2}, \sigma\right\rangle \longrightarrow\left\langle n<a_{2}^{\prime}, \sigma\right\rangle}
$$

$$
\overline{\langle n<m, \sigma\rangle \longrightarrow\langle\text { true, } \sigma\rangle} \text { where } n<m \quad \overline{\langle n<m, \sigma\rangle \longrightarrow\langle\text { false }, \sigma\rangle} \text { where } n \geq m
$$

Commands

$$
\begin{array}{cc}
\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma\right\rangle \\
{, \sigma\rangle} } & \langle x:=n, \sigma\rangle \longrightarrow\langle\mathbf{\text { skip} , \sigma [x \mapsto n] \rangle} \\
\frac{\left\langle c_{1}, \sigma\right\rangle \longrightarrow\left\langle c_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{1}^{\prime} ; c_{2}, \sigma^{\prime}\right\rangle} & \frac{\left\langle\mathbf{s k i p} ; c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{2}, \sigma\right\rangle}{}
\end{array}
$$

For if commands, we gradually reduce the test until we get either true or false; then, we execute the appropriate branch:

$$
\frac{\langle b, \sigma\rangle \longrightarrow\left\langle b^{\prime}, \sigma\right\rangle}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \longrightarrow\left\langle\text { if } b^{\prime} \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle}
$$

$\left\langle\right.$ if true then c_{1} else $\left.c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{1}, \sigma\right\rangle$

$$
\left\langle\text { if false then } c_{1} \text { else } c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{2}, \sigma\right\rangle
$$

For while loops, the above strategy doesn't work (why?). Instead, we use the following rule, which can be thought of as "unrolling" the loop, one iteration at a time.
\langle while b do $c, \sigma\rangle \longrightarrow\langle$ if b then $(c ;$ while b do c) else skip, $\sigma\rangle$

We can now take a concrete program and see how it executes under the above rules. Consider we start with state σ where σ (foo) $=0$ and we execute the program

$$
\text { foo }:=3 ; \text { while foo }<4 \text { do foo }:=\text { foo }+5
$$

The execution works as follows:

$$
\langle\text { foo }:=3 ; \text { while foo }<4 \text { do foo }:=\text { foo }+5, \sigma\rangle
$$

$\longrightarrow\left\langle\right.$ skip; while foo <4 do foo: $=$ foo $\left.+5, \sigma^{\prime}\right\rangle$
where $\sigma^{\prime}=\sigma[\mathrm{foo} \mapsto 3]$
$\longrightarrow\left\langle\right.$ while foo <4 do foo := foo $\left.+5, \sigma^{\prime}\right\rangle$
$\longrightarrow\left\langle\right.$ if foo <4 then (foo: $=$ foo $+5 ; W$) else skip, $\left.\sigma^{\prime}\right\rangle$
$\longrightarrow\left\langle\right.$ if $3<4$ then (foo := foo $+5 ; W$) else skip, $\left.\sigma^{\prime}\right\rangle$
\longrightarrow 〈if true then (foo := foo $+5 ; W$) else skip, $\left.\sigma^{\prime}\right\rangle$
$\longrightarrow\left\langle\right.$ foo $:=$ foo +5 ; while foo <4 do foo $:=$ foo $\left.+5, \sigma^{\prime}\right\rangle$
$\longrightarrow\left\langle\right.$ foo $:=3+5$; while foo <4 do foo $:=$ foo $\left.+5, \sigma^{\prime}\right\rangle$
$\longrightarrow\left\langle\right.$ foo $:=8 ;$ while foo <4 do foo $:=$ foo $\left.+5, \sigma^{\prime}\right\rangle$
$\longrightarrow\left\langle\right.$ while foo <4 do foo := foo $\left.+5, \sigma^{\prime \prime}\right\rangle \quad$ where $\sigma^{\prime \prime}=\sigma^{\prime}[$ foo $\mapsto 8]$
$\longrightarrow\left\langle\right.$ if foo <4 then (foo := foo $+5 ; W$) else skip, $\left.\sigma^{\prime \prime}\right\rangle$
$\longrightarrow\left\langle\mathbf{i f} 8<4\right.$ then (foo := foo $+5 ; W$) else skip, $\left.\sigma^{\prime \prime}\right\rangle$
$\longrightarrow\left\langle\right.$ if false then (foo := foo $+5 ; W$) else skip, $\left.\sigma^{\prime \prime}\right\rangle$
$\longrightarrow\left\langle\right.$ skip, $\left.\sigma^{\prime \prime}\right\rangle$
(where W is an abbreviation for the while loop while foo <4 do foo := foo +5).

