
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Large-step operational semantics for IMP; Properties of IMP

Lecture 4 Thursday, February 7, 2010

1 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, boolean expressions, and commands.
The relation for arithmetic expressions relates an arithmetic expression and store to the integer value that
the expression evaluates to. For boolean expressions, the final value is in Bool = {true, false}. For com-
mands, the final value is a store.

⇓Aexp ⊆ Aexp× Store× Int
⇓Bexp ⊆ Bexp× Store× Bool
⇓Com ⊆ Com× Store× Store

Again, we overload the symbol ⇓ and use it for any of these three relations; which relation is intended
will be clear from context. We also use infix notation, for example writing 〈c, σ〉 ⇓ σ′ if (c, σ, σ′) ∈⇓Com.
Arithmetic expressions.

〈n, σ〉 ⇓ n 〈x, σ〉 ⇓ n
where σ(x) = n

〈e1, σ〉 ⇓ n1 〈e2, σ〉 ⇓ n2
〈e1 + e2, σ〉 ⇓ n

where n = n1 + n2
〈e1, σ〉 ⇓ n1 〈e2, σ〉 ⇓ n2

〈e1 × e2, σ〉 ⇓ n
where n = n1 × n2

Boolean expressions.

〈true, σ〉 ⇓ true 〈false, σ〉 ⇓ false

〈a1, σ〉 ⇓ n1 〈a2, σ〉 ⇓ n2
〈a1 < a2, σ〉 ⇓ true

where n1 < n2
〈a1, σ〉 ⇓ n1 〈a2, σ〉 ⇓ n2
〈a1 < a2, σ〉 ⇓ false

where n1 ≥ n2

Commands.

SKIP
〈skip, σ〉 ⇓ σ

ASG
〈e, σ〉 ⇓ n

〈x := e, σ〉 ⇓ σ[x 7→ n]
SEQ

〈c1, σ〉 ⇓ σ′ 〈c2, σ′〉 ⇓ σ′′

〈c1; c2, σ〉 ⇓ σ′′

IF-T
〈b, σ〉 ⇓ true 〈c1, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′
IF-F

〈b, σ〉 ⇓ false 〈c2, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′

WHILE-F
〈b, σ〉 ⇓ false

〈while b do c, σ〉 ⇓ σ
WHILE-T

〈b, σ〉 ⇓ true 〈c, σ〉 ⇓ σ′ 〈while b do c, σ′〉 ⇓ σ′′

〈while b do c, σ〉 ⇓ σ′′

It’s interesting to see that the rule for while loops does not rely on using an if command (as we needed
in the case of small-step semantics). Why does this rule work?

Lecture 4 Large-step operational semantics for IMP; Properties of IMP

1.1 Command equivalence

The small-step operational semantics suggest that the loop while b do c should be equivalent to the com-
mand if b then (c;while b do c) else skip. Can we show that this indeed the case that the language is
defined using the above large-step evaluation?

First, we need to to be more precise about what “equivalent commands” mean. Our formal model
allows us to define this concept using large-step evaluations as follows. (One can write a similar definition
using −→∗ in small-step semantics.)

Definition (Equivalence of commands). Two commands c and c′ are equivalent (written c ∼ c′) if, for any
stores σ and σ′, we have

〈c, σ〉 ⇓ σ′ ⇐⇒ 〈c′, σ〉 ⇓ σ′.

We can now state and prove the claim that while b do c and if b then (c;while b do c) else skip are
equivalent.

Theorem. For all b ∈ Bexp and c ∈ Com we have

while b do c ∼ if b then (c;while b do c) else skip.

Proof. Let W be an abbreviation for while b do c. We want to show that for all stores σ, σ′, we have:

〈W,σ〉 ⇓ σ′ if and only if if b then (c;W) else skip ⇓ σ′

For this, we must show that both directions (=⇒ and⇐=) hold. We’ll show only direction =⇒; the other is
similar.

Assume that σ and σ′ are stores such that 〈W,σ〉 ⇓ σ′. It means that there is some derivation that proves
for this fact. Inspecting the evaluation rules, we see that there are two possible rules whose conclusions
match this fact: WHILE-F and WHILE-T. We analyze each of them in turn.

• WHILE-F. The derivation must look like the following.

WHILE-F

...1

〈b, σ〉 ⇓ false
〈W,σ〉 ⇓ σ

Here, we use
...1 to refer to the derivation of 〈b, σ〉 ⇓ false. Note that in this case, σ′ = σ.

We can use
...1 to derive a proof tree showing that the evaluation of if b then (c;W) else skip yields

the same final state σ:

IF-F

...1

〈b, σ〉 ⇓ false
SKIP

〈skip, σ〉 ⇓ σ
〈if b then (c;W) else skip, σ〉 ⇓ σ

• WHILE-T. In this case, the derivation has the following form.

WHILE-T

...2

〈b, σ〉 ⇓ true

...3

〈c, σ〉 ⇓ σ′′

...4

〈W,σ′′〉 ⇓ σ′

〈W,σ〉 ⇓ σ′

Page 2 of 6

Lecture 4 Large-step operational semantics for IMP; Properties of IMP

We can use subderivations
...2,

...3, and
...4 to show that the evaluation of if b then (c;W) else skip yields

the same final state σ.

IF-T

...2

〈b, σ〉 ⇓ true
SEQ

...3

〈c, σ〉 ⇓ σ′′

...4

〈W,σ′′〉 ⇓ σ′

〈c;W,σ〉 ⇓ σ′

〈if b then (c;W) else skip, σ〉 ⇓ σ′

Hence, we showed that in each of the two possible cases, the command if b then (c;W) else skip
evaluates to the same final state as the command W .

2 Some properties of IMP

2.1 Equivalence of semantics

The small-step and large-step semantics are equivalent. We state this formally in the following theorem.

Theorem (Equivalence of IMP semantics). For all commands c ∈ Com and stores σ, σ′ ∈ Store we have

〈c, σ〉 −→∗ 〈skip, σ′〉 ⇐⇒ 〈c, σ〉 ⇓ σ′.

2.2 Non-termination

For a command c and initial state σ, the execution of the command may terminate with some final store σ′,
or it may diverge and never yield a final state. For example, the command while true do foo := foo + 1
always diverges; the command while 0 < i do i := i+ 1 will diverge if and only if the value of variable i in
the initial state is positive.

If 〈c, σ〉 is a configuration that diverges, then there is no state σ′ such that 〈c, σ〉 ⇓ σ′ or 〈c, σ〉 −→∗
〈skip, σ′〉. However, in small-step semantics, a diverging computation has an infinite sequence of config-
urations: 〈c, σ〉 −→ 〈c1, σ1〉 −→ 〈c2, σ2〉 −→ Small-step semantics can allow us to state, and prove,
properties about programs that may diverge. Later in the course, we will specify and prove properties that
are of interest in potentially diverging computations.

2.3 Determinism of commands

The semantics of IMP (both small-step and large-step) are deterministic. That is, each IMP command c and
each initial store σ evaluates to at most one final store. We state this formally for the large-step semantics
below.

Theorem. For all commands c ∈ Com and stores σ, σ1, σ2 ∈ Store, if 〈c, σ〉 ⇓ σ1 and 〈c, σ〉 ⇓ σ2 then σ1 = σ2.

We need an inductive proof to prove this theorem. However, induction on the structure of command c
does not work. (Why? Which of the cases does it fail for?) Instead, we need to perform induction on the
derivation of 〈c, σ〉 ⇓ σ1. We first introduce some useful notation.

Let d be a derivation. We write d y if d is a derivation of y, that is, if the conclusion of d is y. For
example, if d is the following deriviation

〈6, σ〉 ⇓ 6 〈7, σ〉 ⇓ 7

〈6× 7, σ〉 ⇓ 42

〈i := 6× 7, σ〉 ⇓ σ[i 7→ 42]

Page 3 of 6

Lecture 4 Large-step operational semantics for IMP; Properties of IMP

then we have d 〈i := 42, σ〉 ⇓ σ[i 7→ 42].
We say that derivation d has the form {d1, . . . , dn}/y if d y and the inference rule that d used to conclue

y has premises y1, . . . , yn such that d1 y1, . . . , dn yn.
Let d and d′ be derivations. We say that d′ is an immediate subderivation of d if d′ if d is of the form

{d′, d1, . . . , dn}/y. That is, d′ is a derivation of one of the premises used in the final rule in the derivation d.
For example, the derivation

〈6, σ〉 ⇓ 6 〈7, σ〉 ⇓ 7

〈6× 7, σ〉 ⇓ 42

is an immediate subderivation of

〈6, σ〉 ⇓ 6 〈7, σ〉 ⇓ 7

〈6× 7, σ〉 ⇓ 42

〈i := 6× 7, σ〉 ⇓ σ[i 7→ 42]

Before we commence the proof of the theorem, we will need two lemmas, related to the determinism of
the arithmetic and boolean semantics, ⇓Aexp and ⇓Bexp.

Lemma 1. For all arithmetic expressions a ∈ Aexp, stores σ ∈ Store, and integers n1, n2 ∈ Int, if 〈a, σ〉 ⇓ n1 and
〈a, σ〉 ⇓ n2 then n1 = n2.

Lemma 2. For all boolean expressions b ∈ Aexp, stores σ ∈ Store, and integers b1, b2 ∈ Bool, if 〈b, σ〉 ⇓ b1 and
〈a, σ〉 ⇓ b2 then b1 = b2.

These lemmas are straightforward to prove, and can be proved using strucutral induction on arithmetic
and boolean expressions respectively.

Proof. We proceed by induction on the derivation of 〈c, σ〉 ⇓ σ1. The inductive hypothesis P is

P (d) = ∀c ∈ Com. ∀σ, σ′, σ′′ ∈ Store, if 〈c, σ〉 ⇓ σ′′ and d 〈c, σ〉 ⇓ σ′ then σ′ = σ′′.

Let d be a derivation. Assume that the inductive hypothesis holds for all immediate subderivations of
d. Assume 〈c, σ〉 ⇓ σ′′ and d 〈c, σ〉 ⇓ σ′. Since 〈c, σ〉 ⇓ σ′′, there must be some derivation d1 such that
d1 〈c, σ〉 ⇓ σ′′.

We consider the possible cases for the last rule used in derivation d.

• SKIP

In this case

d =
SKIP

...

〈skip, σ〉 ⇓ σ ,

and we have c = skip and σ′ = σ. Since the rule SKIP is the only rule that has the command skip in
its conclusion, the last rule used in d1 must also be SKIP, and so we have σ′′ = σ and the result holds.

• ASG

In this case

d =
ASG

...

〈a, σ〉 ⇓ n
〈x := a, σ〉 ⇓ σ′ ,

and we have c = x := a and σ′ = σ[x 7→ n]. The last rule used in d1 must also be ASG, and so we have
d′ 〈x := a, σ〉 ⇓ σ[x 7→ m], where 〈a, σ〉 ⇓ m. By the determinism of arithmetic expressions, m = n
and so σ′′ = σ′ and the result holds.

Page 4 of 6

Lecture 4 Large-step operational semantics for IMP; Properties of IMP

• SEQ

In this case

d =
SEQ

...

〈c1, σ〉 ⇓ σ1

...

〈c2, σ1〉 ⇓ σ′

〈c1; c2, σ〉 ⇓ σ′ ,

and we have c = c1; c2. The last rule used in d1 must also be SEQ, and so we have

d1 =
SEQ

...

〈c1, σ〉 ⇓ σ′1

...

〈c2, σ′1〉 ⇓ σ′′

〈c1; c2, σ〉 ⇓ σ′′ .

By the inductive hypothesis applied to the derivation

...

〈c1, σ〉 ⇓ σ1 , we have σ1 = σ′1. By another

application of the inductive hypothesis, to the derivation

...

〈c2, σ1〉 ⇓ σ′ , we have σ′ = σ′′ and the
result holds.

• IF-T

Here we have

d =
IF-T

...

〈b, σ〉 ⇓ true

...

〈c1, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′ ,

and we have c = if b then c1 else c2. The last rule used in d1 must be either IF-T or IF-F (since these
are the only rules that can be used to derive a conclusion of the form 〈if b then c1 else c2, σ〉 ⇓ σ′′).
But by the determinism of boolean expressions, we must have 〈b, σ〉 ⇓ true, and so d1 must have the
following form.

d1 =
IF-T

...

〈b, σ〉 ⇓ true

...

〈c1, σ〉 ⇓ σ′′

〈if b then c1 else c2, σ〉 ⇓ σ′′

The result holds by the inductive hypothesis applied to the derivation

...

〈c1, σ〉 ⇓ σ′ .

• IF-F

Similar to the case for IF-T.

• WHILE-F

Straightforard, similar to the case for SKIP.

• WHILE-T

Here we have

d =
WHILE-T

...

〈b, σ〉 ⇓ true

...

〈c1, σ〉 ⇓ σ1

...

〈c, σ1〉 ⇓ σ′

〈while b do c1, σ〉 ⇓ σ′ ,

Page 5 of 6

Lecture 4 Large-step operational semantics for IMP; Properties of IMP

and we have c = while b do c1. The last rule used in d1 must also be WHILE-T (by the determinism
of boolean expressions), and so we have

d1 =
WHILE-T

...

〈b, σ〉 ⇓ true

...

〈c1, σ〉 ⇓ σ′1

...

〈c, σ′1〉 ⇓ σ′′

〈while b do c1, σ〉 ⇓ σ′′ .

By the inductive hypothesis applied to the derivation

...

〈c1, σ〉 ⇓ σ1 , we have σ1 = σ′1. By another

application of the inductive hypothesis, to the derivation

...

〈c, σ1〉 ⇓ σ′ , we have σ′ = σ′′ and the
result holds.

Note: Even though the command c = while b do c1 appears in the derivation d of 〈while b do c1, σ〉 ⇓
σ′, we do not run in to problems, as the induction is over the derivation, not over the structure of the
command.

In all cases, we have shown that ∀c ∈ Com. ∀σ, σ′, σ′′ ∈ Store, if 〈c, σ〉 ⇓ σ′′ and d 〈c, σ〉 ⇓ σ′ then σ′ = σ′′.
Thus we can conclude that P (d) holds for all derivations for the executions of commands. This is equivalent
to

∀c ∈ Com. ∀σ, σ′, σ′′ ∈ Store, if 〈c, σ〉 ⇓ σ′ and 〈c, σ〉 ⇓ σ′′ then σ′ = σ′′

which proves the theorem.

Page 6 of 6

