
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Inductive definitions and proofs

Lecture 2 Thursday, January 30, 2014

1 Expressing Program Properties

Now that we have defined our small-step operational semantics, we can formally express different proper-
ties of programs. For instance:

• Progress: For each store σ and expression e that is not an integer, there exists a possible transition for
〈e, σ〉:

∀e ∈ Exp. ∀σ ∈ Store. either e ∈ Int or ∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉

• Termination: The evaluation of each expression terminates:

∀e ∈ Exp. ∀σ0 ∈ Store. ∃σ ∈ Store. ∃n ∈ Int. 〈e, σ0〉 −→∗ 〈n, σ〉

• Deterministic Result: The evaluation result for any expression is deterministic:

∀e ∈ Exp. ∀σ0, σ, σ′ ∈ Store. ∀n, n′ ∈ Int.
if 〈e, σ0〉 −→∗ 〈n, σ〉 and 〈e, σ0〉 −→∗ 〈n′, σ′〉 then n = n′ and σ = σ′.

How can we prove such kinds of properties? Inductive proofs allow us to prove statements such as the
properties above. We first introduce inductive sets, introduce inductive proofs, and then show how we can
prove progress (the first property above) using inductive techniques.

2 Inductive sets

Induction is an important concept in the theory of programming language. We have already seen it used to
define language syntax, and to define the small-step operational semantics for the arithmetic language.

An inductively defined set A is a set that is built using a set of axioms and inductive (inference) rules.
Axioms of the form

a ∈ A
indicate that a is in the set A. Inductive rules

a1 ∈ A . . . an ∈ A
a ∈ A

indicate that if a1, . . . , an are all elements of A, then a is also an element of A.
The set A is the set of all elements that can be inferred to belong to A using a (finite) number of applica-

tions of these rules, starting only from axioms. In other words, for each element a of A, we must be able to
construct a finite proof tree whose final conclusion is a ∈ A.

Example 1. The language of a grammar is an inductive set. For instance, the set of arithmetic expressions
(without assignment) can be described with 2 axioms, and 2 inductive rules:

VAR
x ∈ Exp

x ∈ Var INT
n ∈ Exp

n ∈ Int

ADD
e1 ∈ Exp e2 ∈ Exp

e1 + e2 ∈ Exp
MUL

e1 ∈ Exp e2 ∈ Exp
e1 × e2 ∈ Exp

Lecture 2 Inductive definitions and proofs

This is equivalent to the grammar e ::= x | n | e1 + e2 | e1 × e2.
To show that (foo+3)× bar is an element of the set Exp, it suffices to show that foo+3 and bar are in the

set Exp, since the inference rule MUL can be used, with e1 ≡ foo+3 and e2 ≡ foo, and, since if the premises
foo+ 3 ∈ Exp and bar ∈ Exp are true, then the conclusion (foo+ 3)× bar ∈ Exp is true.

Similarly, we can use rule ADD to show that if foo ∈ Exp and 3 ∈ Exp, then (foo+ 3) ∈ Exp. We can use
axiom VAR (twice) to show that foo ∈ Exp and bar ∈ Exp and rule INT to show that 3 ∈ Exp. We can put
these all together into a derivation whose conclusion is (foo+ 3)× bar ∈ Exp:

MUL

ADD

VAR
foo ∈ Exp

INT
3 ∈ Exp

(foo+ 3) ∈ Exp
VAR

bar ∈ Exp
(foo+ 3)× bar ∈ Exp

Example 2. The natural numbers can be inductively defined:

0 ∈ N
n ∈ N

succ(n) ∈ N

where succ(n) is the successor of n.

Example 3. The small-step evaluation relation −→ is an inductively defined set. The definition of this set
is given by the semantic rules.

Example 4. The transitive, reflexive closure−→∗ (i.e., the multi-step evaluation relation) can be inductively
defined:

〈e, σ〉 −→∗ 〈e, σ〉
〈e, σ〉 −→ 〈e′, σ′〉 〈e′, σ′〉 −→∗ 〈e′′, σ′′〉

〈e, σ〉 −→∗ 〈e′′, σ′′〉

3 Inductive proofs

We can prove facts about elements of an inductive set using an inductive reasoning that follows the struc-
ture of the set definition.

3.1 Mathematical induction

You have probably seen proofs by induction over the natural numbers, called mathematical induction. In such
proofs, we typically want to prove that some property P holds for all natural numbers, that is, ∀n ∈ N. P (n).
A proof by induction works by first proving that P (0) holds, and then proving for all m ∈ N, if P (m) then
P (m+ 1). The principle of mathematical induction can be stated succinctly as

P (0) and (∀m ∈ N. P (m) =⇒ P (m+ 1)) =⇒ ∀n ∈ N. P (n).

The assertion that P (0) is the basis of the induction (also called the base case). Establishing that P (m) =⇒
P (m+1) is called inductive step, or the inductive case. While proving the inductive step, the assumption that
P (m) holds is called the inductive hypothesis.

3.2 Structural induction

Given an inductively defined set A, to prove that property P holds for all elements of A, we need to show:

1. Base cases: For each axiom

a ∈ A ,

P (a) holds.

Page 2 of 5

Lecture 2 Inductive definitions and proofs

2. Inductive cases: For each inference rule

a1 ∈ A . . . an ∈ A
a ∈ A ,

if P (a1) and . . . and P (an) then P (a).

If the set A is the set of natural numbers (see Example 2 above), then the requirements given above for
proving that P holds for all elements of A is equivalent to mathematical induction.

If A describes a syntactic set, then we refer to induction following the requirements above as structural
induction. If A is an operational semantics relation (such as the small-step operational semantics relation
−→) then such induction is called induction on derivations. We will see examples of structural induction and
induction on derivations throughout the course.

3.3 Example: Proving progress

Let’s consider the progress property defined above, and repeated here:

Progress: For each store σ and expression e that is not an integer, there exists a possible transition for 〈e, σ〉:

∀e ∈ Exp. ∀σ ∈ Store. either e ∈ Int or ∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉

Let’s rephrase this property as: for all expressions e, P (e) holds, where:

P (e) = ∀σ. (e ∈ Int) ∨ (∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉)

The idea is to build a proof that follows the inductive structure in the grammar of expressions:

e ::= x | n | e1 + e2 | e1 × e2 | x := e1; e2.

This is called “structural induction on the expressions e”. We must examine each case in the grammar
and show that P (e) holds for that case. Since the grammar productions e = e1 + e2 and e = e1 × e2 and
e = x := e1; e2 are inductive definitions of expressions, they are inductive steps in the proof; the other two
cases e = x and e = n are the basis of induction. The proof goes as follows:

We will show by structural induction that for all expressions e we have

P (e) = ∀σ. (e ∈ Int) ∨ (∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉).

Consider the possible cases for e.

• Case e = x. By the VAR axiom, we can evaluate 〈x, σ〉 in any state: 〈x, σ〉 −→ 〈n, σ〉, where n = σ(x).
So e′ = n is a witness that there exists e′ such that 〈x, σ〉 −→ 〈e′, σ〉, and P (x) holds.

• Case e = n. Then e ∈ Int, so P (n) trivially holds.

• Case e = e1+e2. This is an inductive step. The inductive hypothesis is that P holds for subexpressions
e1 and e2. We need to show that P holds for e. In other words, we want to show that P (e1) and P (e2)
implies P (e). Let’s expand these properties. We know that the following hold:

P (e1) = ∀σ. (e1 ∈ Int) ∨ (∃e′, σ′. 〈e1, σ〉 −→ 〈e′, σ′〉)
P (e2) = ∀σ. (e2 ∈ Int) ∨ (∃e′, σ′. 〈e2, σ〉 −→ 〈e′, σ′〉)

and we want to show:

P (e) = ∀σ. (e ∈ Int) ∨ (∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉)

Page 3 of 5

Lecture 2 Inductive definitions and proofs

We must inspect several subcases.

First, if both e1 and e2 are integer constants, say e1 = n1 and e2 = n2, then by rule ADD we know that
the transition 〈n1+n2, σ〉 −→ 〈n, σ〉 is valid, where n is the sum of n1 and n2. Hence, P (e) = P (n1+n2)
holds (with witness e′ = n).

Second, if e1 is not an integer constant, then by the inductive hypothesisP (e1) we know that 〈e1, σ〉 −→
〈e′, σ′〉 for some e′ and σ′. We can then use rule LADD to conclude 〈e1 + e2, σ〉 −→ 〈e′ + e2, σ

′〉, so
P (e) = P (e1 + e2) holds.

Third, if e1 is an integer constant, say e1 = n1, but e2 is not, then by the inductive hypothesis P (e2)
we know that 〈e2, σ〉 −→ 〈e′, σ′〉 for some e′ and σ′. We can then use rule RADD to conclude 〈n1 +
e2, σ〉 −→ 〈n1 + e′, σ′〉, so P (e) = P (n1 + e2) holds.

• Case e = e1 × e2 and case e = x := e1; e2. These are also inductive cases, and their proofs are similar
to the previous case. [Note that if you were writing this proof out for a homework, you should write
these cases out in full.]

3.4 A recipe for inductive proofs

In this class, you will be asked to write inductive proofs. Until you are used to doing them, inductive proofs
can be difficult. Here is a recipe that you should follow when writing inductive proofs. Note that this recipe
was followed above.

1. State what you are inducting over. In the example above, we are doing structural induction on the
expressions e.

2. State the inductive hypothesis P that you are proving by induction. (Sometimes, as in the proof above
the inductive hypothesis P will be essentially identical to the theorem/lemma/property that you are
proving; other times the inductive hypothesis will need to be stronger than theorem/lemma/property
you are proving in order to get the different cases to go through.)

3. Go through each case. For each case, don’t be afraid to be verbose, spelling out explicitly how the
meta-variables in an inference rule are instantiated in this case.

3.5 Example: the store changes incremental

Let’s see another example of an inductive proof, this time doing an induction on the derivation of the small
step operational semantics relation. The property we will prove is that for all expressions e and stores σ, if
〈e, σ〉 −→ 〈e′, σ′〉 then either σ = σ′ or there is some variable x and integer n such that σ′ = σ[x 7→ n]. That
is, in one small step, either the new store is identical to the old store, or is the result of updating a single
program variable.

Theorem 1. For all expressions e and stores σ, if 〈e, σ〉 −→ 〈e′, σ′〉 then either σ = σ′ or there is some variable x
and integer n such that σ′ = σ[x 7→ n].

Proof. We proceed by induction on the derivation of 〈e, σ〉 −→ 〈e′, σ′〉. The inductive hypothesis is that if
〈e, σ〉 −→ 〈e′, σ′〉 then either σ = σ′ or there is some variable x and integer n such that σ′ = σ[x 7→ n].

Suppose we have a derivation of 〈e, σ〉 −→ 〈e′, σ′〉 for some e, σ, e′, and σ′. Assume that the inductive
hypothesis holds for any subderivation 〈e0, σ0〉 −→ 〈e′0, σ′0〉 used in the derivation of 〈e, σ〉 −→ 〈e′, σ′〉.
Consider the last rule used in the derivation of 〈e, σ〉 −→ 〈e′, σ′〉.

• Case ADD. This is an axiom. Here, e ≡ n +m and e′ = p where p is the sum of m and n, and σ′ = σ.
The result holds immediately.

• Case LADD. This is an inductive case. Here, e ≡ e1 + e2 and e′ ≡ e′1 + e2 and 〈e1, σ〉 −→ 〈e′1, σ′〉. By
the inductive hypothesis, applied to 〈e1, σ〉 −→ 〈e′1, σ′〉, we have that either σ = σ′ or there is some
variable x and integer n such that σ′ = σ[x 7→ n], as required.

Page 4 of 5

Lecture 2 Inductive definitions and proofs

• Case ASG. This is an axiom. Here e ≡ x := n; e2 and e′ ≡ e2 and σ′ = σ[x 7→ n]. The result holds
immediately.

• We leave the other cases (VAR, RADD, LMUL, RMUL, MUL, and ASG1) as exercises for the reader.

Page 5 of 5

