
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Dynamic types

Lecture 18 Thursday, April 3, 2014

1 Error-propagating semantics

For the last few weeks, we have been studying type systems. As we have seen, types can be useful for
reasoning about a program’s execution (before ever actually executing the program!) and also for restricting
the use of values or computations (for example, using existential types to provide encapsulation).

However, many currently popular languages (including JavaScript, Perl, PHP, Python, Ruby, and Scheme)
do not have static type systems. None-the-less, during execution these languages manipulate values of dif-
ferent types, but when a value is used in an inappropriate way, the program does not get stuck, but instead
causes an error at runtime.

To model these dynamic type errors, let’s extend an (untyped) lambda calculus with a special Err value.

e ::= x | λx. e | e1 e2 | n | e1 + e2 | Err
v ::= n | λx. e | Err

Note that Err is not part of the “surface syntax”, i.e., the source program will not contain Err, but instead
this special value will only arise during execution. (This is similar to locations `, which are created by
allocation, but do not appear in source programs.)

The intention is that if we dynamically encounter a type error (e.g., try to add two functions together, or
apply an integer as if it were a function), we will produce the Err value.

E ::= E e | v E | E + e | v + E

e −→ e′

E[e] −→ E[e′] (λx. e) v −→ e{v/x}
v 6= Err

n1 + n2 −→ n
n = n1 + n2

v1 v2 −→ Err
v1 6= λx. e

v1 + v2 −→ Err
v1 or v2 not an integer

We also need some rules to propagate errors. For example, if the argument to a function is an error.

(λx. e) Err −→ Err

Let’s see an example of a program executing.

42 + ((λf. λn. f (n+ 3)) (λx. x) (λx. x))

−→42 + ((λn. (λx. x) (n+ 3)) (λx. x))

−→42 + ((λx. x) ((λx. x) + 3))

−→42 + ((λx. x) Err)

−→42 + Err

−→Err

Note that once an error has occurred in a subexpression, the error will propagate up to the top level.
In our simple calculus, it is easy for us to determine syntactically whether a particular value is an integer

or a function, and thus to figure out whether it is being used appropriately. In an implementation, however,

Lecture 18 Dynamic types

we may need to ensure that at run time we have some way of distinguishing values of different types. For
example, we wouldn’t be able to implement this error-propagating semantics if both integers and functions
were represented using 32 bits with no way to distinguish them (e.g., 32-bit signed integers, and 32-bit
pointers to function bodies).

Given that we need this run-time information to distinguish values of different types, we could provide
primitives to allow the programmer to query the type of a value. This would allow a careful or paranoid
programmer to avoid dynamic type errors. We extend the language with booleans, conditionals, and prim-
itives to check whether a value is an integer or a function.

e ::= · · · | true | false | if e1 then e2 else e3 | is int? e | is fun? e | is bool? e
v ::= · · · | true | false
E ::= · · · | if E then e2 else e3 | is int? E | is fun? E | is bool? E

if true then e2 else e3 −→ e2 if false then e2 else e3 −→ e3

if v then e2 else e3 −→ Err
v 6= true and v 6= false

is int? n −→ true is int? v −→ false
v not an integer and v 6= Err

is fun? λx. e −→ true

is fun? v −→ false
v 6= λx. e and v 6= Err

is bool? v −→ true
v = true or v = false

is bool? v −→ false
v 6∈ {true, false,Err}

Again, we need some additional rules to propagate errors.

is int? Err −→ Err is fun? Err −→ Err is bool? Err −→ Err

2 Exception handling

As mentioned above, once an error has occurred in a subexpression, it propagates up to the top level.
However, if a programmer knows how to handle an error, then we should perhaps allow the programmer
to “catch” or handle the error. Indeed, let’s give the programmer an explicit mechanism to raise an error.
This is similar to an exception mechanism, where exceptions can be raised (also known as “throwing” an
exception), and then caught by handlers. We could extend the language to have different kinds of errors,
or exceptions, that can be raised, and extend our handler mechanism to selectively catch errors. Let’s not
go quite that far, but we will add values to errors.

e ::= · · · | try e1 catch x. e2 | raise e
v ::= · · · | Err v
E ::= · · · | try E catch x. e2 | raise E

The raise primitive raises an error, while try e1 catch x. e2 will evaluation e1, and evaluate e2 with x
bound to value v only if e1 evaluates to Err v.

raise v −→ Err v
v 6= Err v′

raise (Err v) −→ Err v

try Err v catch x. e2 −→ e2{v/x} try v catch x. e2 −→ v
v 6= Err v′

Page 2 of 6

Lecture 18 Dynamic types

We give new rules for creating errors, so that when evaluation raises an error, it has a value associated
with it. Here we use the integer zero to indicate that a non-function value was applied, integer 1 to indicate
that a non-integer value was used as an operand for addition, and integer 2 to indicate that a non-boolean
value was used as the test for a conditional. Of course, in a more expressive language, we may use strings
to describe the errors.

v1 v2 −→ Err 0
v1 6= λx. e

v1 + v2 −→ Err 1
v1 or v2 not an integer

if v then e2 else e3 −→ Err 2
v 6= true and v 6= false

(We would, of course, need to also modify the previous rules we presented in Section 1 to account for
the fact that Err now has a value associated with it. This is straightforward, and we omit the details.)

Consider the following program:

let foo = λx. if is int? x then x+ 7 else raise (x+ 1)

in foo (λy. y)

What happens when we execute it?

3 Contracts

We introduced primitive operations to distinguish integers, booleans, and functions. A defensive program-
mer may insert code to check that values have the expected type. But what happens if we need to use
third-party code (i.e., code that is not under our control)? We will not be able to insert checks into that code.

This means that we may not be able to quickly detect type errors dynamically: the actual type error
could occur significantly after a value was produced that failed to meet the programmer’s expectations.

Consider the following example.

let double = λf. f (f 0) in
let pos = λi. if i < 0 then false else true in
double pos

Function double takes in a function f , applies it to zero, and applies f again to the result. Clearly, double
is expecting f to be a function that accepts integers, and returns integers. Function pos , however, takes an
integer and returns a boolean. Let’s see what happens when we run the program.

double pos

−→pos (pos 0)

−→∗pos true
−→if true < 0 then false else true

−→∗Err 2

When we run the program, we get a runtime error in the (second) execution of pos . Suppose this were
a larger program, and think about what would be required to debug this. First, we would need to realize
that the error occurred in the execution of pos , due to the argument to pos being inappropriate. Then we
need to figure out that the call that passed the wrong argument occurred in double . Then we need to figure
out that the argument was the result of calling f 0, then we need to figure out that f was instantiated with
pos . Then, we need to look into the code of pos to see why the result is not an integer. *phew*.

Even in this simple situation, the debugging process requires quite some work, as the actual type error
occurs in a place not directly related to the real source of the error.

Page 3 of 6

Lecture 18 Dynamic types

However, our debugging process revealed that the programmer (i.e., the producer of function double)
made some assumptions about how f is supposed to work. If the programmer could state those assump-
tions explicitly, then perhaps we would be able to produce an error sooner, and closer to the real source
of the issue. Similarly, the developer of pos made some assumptions too, and stating those assumptions
is critical for pos to avoid being abused. As mentioned, defensive programmers could insert defensive
checks into their code, but this would lead to code clutter, obscuring and polluting the code. Also, it is not
necessarily easy to write all the checks correctly.

We introduce a new mechanism to help us ensure that function values act appropriately on the argu-
ments they accept and the results they produce. This calculus is a simplification of higher order contracts1,
a language feature that has not yet found its way into popular scripting languages, but which allows for
dynamic type checking, even in the presence of first-order functions.

A flat contract is simply a function that accepts a value, and returns true if the value meets the contract
(i.e., is good, or acceptable), and returns false otherwise. A monitor monitor(e1, e2) combines a computation
e1 with a contract e2 and will evaluate e1 and e2 to values v1 and v2, and then apply the contract v2 to the
value v1. If the contract says that v1 is acceptable, then execution continues using v1; otherwise a run time
error is raised.

Flat contracts allow us to check that values are integers, booleans, etc.2 However, flat contracts are’t
suitable for ensuring that functions accept and produce values of appropriate types.

We introduce a function contract e1 7−→ e2, which we will use to monitor evaluation of functions. Expres-
sions e1 and e2 are contracts, and when we apply a function to an argument v, we will use contract e1 to
make sure that v is an appropriate argument, and, if the evaluation of the function application terminates,
then we will use contract e2 to check that the result is appropriate.

The following describes the syntax and semantics for extending our language with function contracts
and monitors.

e ::= · · · | e1 7−→ e2 | monitor(e1, e2)

v ::= · · · | v1 7−→ v2 | monitor(v, v1 7−→ v2)

E ::= · · · | E 7−→ e | v 7−→ E | monitor(e, E) | monitor(E, v)

(monitor(v, v1 7−→ v2)) v
′ −→ monitor((v (monitor(v′, v1))), v2)

monitor(v, v′) −→ if v′ v then v else raise 3
v′ 6= v1 7−→ v2

Intuitively, when we have a function application λx. e that is being monitored by contract v1 7−→
v2, we first make sure that argument v passes contract v1 (using monitor(v1, v)), apply the function to
the result, and make sure that the result of the function application will have contract v2 called on it
(monitor((v (v1 v

′)), v2)).
We also need some rules to propagate error values.

(Err v 7−→ e) −→ Err v (e 7−→ Err v) −→ Err v monitor(Err v, e) −→ Err v

monitor(e,Err v) −→ Err v

Let’s take a look at our double example again, this time using a function contract to ensure that double
takes as input, a function from integers to integers, and returns an integer. We also put a function contract
on pos to show that it is a function from integers to booleans. That is, we are making the specification of

1For more information, see Contracts for Higher-Order Functions by Findler and Felleisen, in Proceedings of the Seventh ACM SIGPLAN
International Conference on Functional Programming, 2002.

2In fact, contracts can go beyond simple static type checking, and check arbitrary properties, for example, that an integer is even.
For the purposes of this class, we’ll just consider type-checking-like properties.

Page 4 of 6

Lecture 18 Dynamic types

both double and pos explicit in the code, via contracts, and are checking these specifications as the program
executes.

let double = monitor(λf. f (f 0), (is int? 7−→ is int?) 7−→ is int?) in
let pos = monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?) in
double pos

Note that the contract for double is (is int? 7−→ is int?) 7−→ is int? , indicating that it takes as an argument
a value satisfying function contract is int? 7−→ is int? and will return a value satisfying the flat contract
is int? . Similarly, the contract for pos indicates that it takes an integer as an argument and returns a boolean.

Let’s consider the execution of this program.

double pos

=(monitor(λf. f (f 0), (is int? 7−→ is int?) 7−→ is int?)) pos

−→monitor((λf. f (f 0)) (monitor(pos, is int? 7−→ is int?)), is int?)

=monitor((λf. f (f 0))

(monitor(monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?), is int? 7−→ is int?)), is int?)

−→monitor((M (M 0)), is int?)

where M = monitor(monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?), is int? 7−→ is int?).
Let’s consider the evaluation of M 0.

M 0

=(monitor(N, is int? 7−→ is int?)) 0

where N = monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?)

−→monitor(N monitor(0, is int?), is int?)

−→∗monitor(N 0, is int?)

−→monitor(monitor((λi. if i < 0 then false else true) monitor(0, is int?), is bool?), is int?)

−→∗monitor(monitor((λi. if i < 0 then false else true) 0, is bool?), is int?)

−→monitor(monitor((if 0 < 0 then false else true), is bool?), is int?)

−→monitor(monitor(true, is bool?), is int?)

−→∗monitor(true, is int?)

−→∗Err 3

So what happened here? Again, we got a run time error as a result of executing this program. But note
that the error happened sooner than in the original execution: it happened at the end of the first execution
of pos . Moreover, the contract that raised the error was the contract for double , specifically the part of the
contract that stated that argument f should be a function from integers to integers. Indeed, that was the
part of the specification that was violated: the argument f , when applied to an integer value, did not return
an integer.

3.1 Blame

In the example above, the function contract correctly detected that pos 0 does not evaluate to an integer.
But who was to blame for this error? That is, did the developer of function pos implement that function
incorrectly? Or was it the case that function double was using its argument f incorrectly? In essence, how
do we decide which piece of code is to blame for the error?

Page 5 of 6

Lecture 18 Dynamic types

Knowing who to blame can be useful, not just for pointing fingers, but also for debugging: where is
the error in the code? This can be difficult to figure out in a higher order setting, because if a function is
used incorrectly (i.e., is given an inappropriate argument) the actual error may occur quite a bit later in the
execution.

We can extend the calculus above to keep track of blame, and blame the correct entity. Intuitively, all a
monitor needs to do is keep track of two entities: a label p representing the provider of the code that it is
monitoring (i.e., who is producing the value), and a label n representing the context in which the monitor
occurs. The idea is that if a function is being monitored, then n may provide arguments to the function. We
can think of these labels p and n as being module names, or providers of code. In our example above, there
are three entities involved, and we would perhaps have three different labels: one label for code from the
function double , one label for code from the function pos , and one label for the “main” code that applied
double to pos .

The rules for the monitor keep track of who is to blame. The rules for these blame-tracking monitors are
as follows:

(monitor(v, v1 7−→ v2, p, n)) v
′ −→ monitor((v (monitor(v′, v1, n, p))), v2, p, n)

monitor(v, v′, p, n) −→ if v′ v then v else raise “Blame p”
v′ 6= v1 7−→ v2

The key things to note is that for a monitored function application (monitor(v, v1 7−→ v2, p, n)) v
′, if v′

does not satisfy contract v1, then n will be blamed, i.e., the provider of value v′. By contrast, if the result of
the function application doesn’t satisfy contract v2, then p will be blamed.

In our example above, the entity to blame is the one that wrote the code that applies double to pos . Both
functions double and pos meet their specification. The problem with our example program is that double is
given an argument that doesn’t satisfy the contract for the argument to double .

As a final note, where do the labels come from? It is not the programmer’s job to identify the labels for
the monitor. Rather, the language compiler and runtime is responsible for selecting the labels. The positive
party p for a monitor can be identified immediately: it is the label of the code where the monitor is defined.
Identification of the negative party n for a monitor is delayed until a value is used. That is, it is when a
monitored function is applied, that the negative label is set to be the provider of the argument. For function
double , the provider of the argument is “main” code, i.e., the code that applies double to pos .

Page 6 of 6

