1 Curry-Howard Isomorphism

There is a strong connection between types in programming languages and propositions in intuitionistic logic. This correspondence was noticed by Haskell Curry and William Howard. It is known as the Curry-Howard isomorphism, and also as the propositions-as-types correspondence, and proofs-as-programs correspondence.

Intuitionistic logic equates the truth of formula with their provability. That is, for a statement ϕ to be true, there must be a proof of ϕ. The key difference between intuitionistic logic and classical logic is that in intuitionistic logic, the rule of excluded middle does not apply: it is not a tautology that either ϕ or $\neg \phi$.

The inference rules and axioms for typing programs are very similar to the inference rules and axioms for proving formulas in intuitionistic logic. That is, types are like formulas, and programs are like proofs.

Conjunction = Product types For example, suppose we have an expression e_1 with type τ_1, and expression e_2 with type τ_2. Think of e_1 as a proof of some logical formulas τ_1, and e_2 as a proof of some logical formulas τ_2. What would constitute a proof of the formulas $\tau_1 \land \tau_2$? We would need a proof of τ_1 and a proof of τ_2. Say we put these proofs together in a pair: (e_1, e_2). This is a program with type $\tau_1 \times \tau_2$. That is, the product type $\tau_1 \times \tau_2$ corresponds to conjunction!

Disjunction = Sum types Similarly, how do we prove $\tau_1 \lor \tau_2$? Under intuitionistic logic, we need either a proof of τ_1, or a proof of τ_2. Thinking about programs and types, this means we need either an expression of type τ_1 or an expression of type τ_2. We have a construct that meets this description: the sum type $\tau_1 + \tau_2$ corresponds to disjunction!

Implication = Function types What does the function type $\tau_1 \rightarrow \tau_2$ correspond to? We can think of a function of type $\tau_1 \rightarrow \tau_2$ as taking an expression of type τ_1 and producing something of type τ_2, which by the Curry-Howard isomorphism, means taking a proof of proposition τ_1 and producing a proof of proposition τ_2. This corresponds to implication: if τ_1 is true, then τ_2 is true.

Universal quantification = Parametric polymorphism The polymorphic lambda calculus introduced universal quantification over types: $\forall X. \tau$. As the notation suggests, this corresponds to universal quantification in intuitionistic logic. To prove formula $\forall X. \tau$, we would need a way to prove $\tau\{\tau'/X\}$ for all propositions τ'. This is what the expression $\Lambda X. e$ gives us: for any type τ', the type of the expression $(\Lambda X. e)\{\tau'\}$ is $\tau\{\tau'/X\}$, where τ is the type of e.

Invalidity = uninhabited type So under the Curry-Howard isomorphism, expression e of type τ is a proof of proposition τ. If we have a proposition τ that is not true, then there is no proof for τ, i.e., there is no expression e of type τ. A type that has no expressions with that type is called an uninhabited type. There are many uninhabited types, such as $\forall X. X$. Uninhabited types correspond to false formulas. Inhabited types are theorems.

1.1 Examples

Consider the formula

$$\forall \phi_1, \phi_2, \phi_3. ((\phi_1 \Rightarrow \phi_2) \land (\phi_2 \Rightarrow \phi_3)) \Rightarrow (\phi_1 \Rightarrow \phi_3).$$
The type corresponding to this formula is

$$\forall X, Y, Z. ((X \to Y) \times (Y \to Z)) \to (X \to Z).$$

This formula is a tautology. So there is a proof of the formula. By the Curry-Howard isomorphism, there should be an expression with the type $$\forall X, Y, Z. ((X \to Y) \times (Y \to Z)) \to (X \to Z)$$. Indeed, the following is an expression with the appropriate type.

$$\Lambda X, Y, Z. \lambda f : (X \to Y) \times (Y \to Z). \lambda x : X. ((\#2 f) (\#1 f) x)$$

We saw earlier in the course that we can curry a function. That is, given a function of type $$(\tau_1 \times \tau_2) \to \tau_3$$, we can give a function of type $$\tau_1 \to \tau_2 \to \tau_3$$. We can do this with a function. That is, the expression

$$\lambda f : (\tau_1 \times \tau_2) \to \tau_3, \lambda x : \tau_1, \lambda y : \tau_2, f (x, y)$$

has type

$$((\tau_1 \times \tau_2) \to \tau_3) \to (\tau_1 \to \tau_2 \to \tau_3).$$

The corresponding logical formula is $$(\phi_1 \land \phi_2 \Rightarrow \phi_3) \Rightarrow (\phi_1 \Rightarrow (\phi_2 \Rightarrow \phi_3))$$, which is a tautology.

1.2 Negation and continuations

In intuitionistic logic, if $$\neg \tau$$ is true, then $$\tau$$ is false, meaning there is no proof of $$\tau$$. We can think of $$\neg \tau$$ as being equivalent to $$\tau \Rightarrow \text{False}$$, or, as the type $$\tau \to \bot$$, where $$\bot$$ is some uninhabited type such as $$\forall X. X$$. That is, if $$\neg \tau$$ is true, then if you give me a proof of $$\tau$$, I can give you a proof of False.

We have seen functions that take an argument, and never produce a result: continuations. Continuations can be thought of as corresponding to negation.

Suppose that we have a special type Answer that is the return type of continuations. That is, a continuation that takes an argument of type $$\tau$$ has the type $$\tau \to \text{Answer}$$. Assume further that we have no values of type Answer, i.e., Answer is an uninhabited type.

A continuation-passing style translation of an expression $$e$$ of type $$\tau$$, $$\text{CPS}[e]$$, has the form $$\lambda k : \tau \to \text{Answer}$$, $$\ldots$$, where $$k$$ is a continuation, and the translation will evaluate $$e$$, and give the result to $$k$$. Thus, the type of $$\text{CPS}[e]$$ is $$(\tau \to \text{Answer}) \to \text{Answer}$$. Under the Curry-Howard isomorphism, this type corresponds to $$(\tau \Rightarrow \text{False}) \Rightarrow \text{False}$$, or, equivalently, $$\neg(\neg \tau)$$, the double negation of $$\tau$$, which is equivalent to $$\tau$$. CPS translation converts an expression of type $$\tau$$ to an expression of type $$(\tau \Rightarrow \text{Answer}) \Rightarrow \text{Answer}$$, which is equivalent to $$\tau$$!

2 Existential types

We saw above that universal quantification corresponds to parametric polymorphism. What does existential quantification correspond to? Turns out we can define existential types, which, by the Curry-Howard isomorphism, correspond to existential quantification.

We extend the simply-typed lambda calculus with existential types (and records). An existential type is written $$\exists X. \tau$$, where type variable $$X$$ may occur in $$\tau$$. If a value has type $$\exists X. \tau$$, it means that it is a pair $$\{\tau', v\}$$ of a type $$\tau'$$ and a value $$v$$, such that $$v$$ has type $$\tau\{\tau'/X\}$$.

Thinking about the Curry-Howard isomorphism may provide some intuition for existential types. As the notation and name suggest, the logical formula that corresponds to an existential type $$\exists X. \tau$$ is an existential formula $$\exists X. \phi$$, where $$X$$ may occur in $$\phi$$. In intuitionist logic, would would it mean for the statement “there exists some $$X$$ such that $$\phi$$ is true” to be true? In intuitionist logic, a statement is true only if there is a proof for it. To prove “there exists some $$X$$ such that $$\phi$$ is true” we must actually provide a witness $$\psi$$, an entity that is a suitable replacement for $$X$$, and also, a proof that $$\phi$$ is true when we replace $$X$$ with witness $$\psi$$.

A value $$\{\tau', v\}$$ of type $$\exists X. \tau$$ exactly corresponds to a proof of an existential statement: type $$\tau'$$ is the witness type, and $$v$$ is a value with type $$\tau\{\tau'/X\}$$.
We introduce a language construct to create existential values, and a construct to use existential values. The syntax of the new language is given by the following grammar.

\[
e ::= x | \lambda x : \tau. e | e_1 e_2 | n | e_1 + e_2 \\
| \{ l_1 = e_1, \ldots, l_n = e_n \} | e.l \\
| \text{pack} \{ \tau_1, e \} \text{ as } \exists X. \tau_2 | \text{unpack} \{ X, x \} = e_1 \text{ in } e_2 \\
v ::= n | \lambda x : \tau. e | \{ l_1 = v_1, \ldots, l_n = v_n \} | \text{pack} \{ \tau_1, v \} \text{ as } \exists X. \tau_2 \\
\tau ::= \text{int} | \tau_1 \rightarrow \tau_2 | \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} | X | \exists X. \tau
\]

Note that in this grammar, we annotate existential values with their existential type. The construct to create an existential value, \(\text{pack} \{ \tau_1, e \} \) as \(\exists X. \tau_2 \), is often called \textit{packing}, and the construct to use an existential value is called \textit{unpacking}.

Before we present the operational semantics and typing rules, let’s see some examples to get an intuition for packing and unpacking. Existential types provide us with a mechanism to reason about \textit{modules} which can hide their implementation details. That is, a module that wants to hide away its internal details tells the external world that there is \textit{some} type or types that describe its internal structures and implementation, but the clients are not allowed to know anything about these implementation types, simply that they exist.

Here we create an existential value that implements a counter, without revealing details of its implementation.

\[
\text{let } \text{counterADT} = \\
\text{pack} \\
\{ \text{int}, \{ \text{new} = 0, \text{get} = \lambda i : \text{int}. i, \text{inc} = \lambda i : \text{int}. i + 1 \} \} \\
\text{as } \exists \text{Counter}. \{ \text{new} : \text{Counter}, \text{get} : \text{Counter} \rightarrow \text{int}, \text{inc} : \text{Counter} \rightarrow \text{Counter} \}
\]

The abstract type name is \textit{Counter}, and its concrete representation is \textit{int}. The type of the variable \textit{counterADT} is \(\exists \text{Counter}. \{ \text{new} : \text{Counter}, \text{get} : \text{Counter} \rightarrow \text{int}, \text{inc} : \text{Counter} \rightarrow \text{Counter} \} \).

We can use the existential value \textit{counterADT} as follows.

\[
\text{unpack} \{ C, x \} = \text{counterADT} \text{ in let } y:C = x.\text{new in } x.\text{get } (x.\text{inc } (x.\text{inc } y))
\]

Note that we annotate the \textit{pack} construct with the existential type. That is, we explicitly state the type \(\exists \text{Counter} . . . \). Why is this? Without this annotation, we would not know which occurrences of the witness type are intended to be replaced with the type variable, and which are intended to be left as the witness type. In the counter example above, the type of expressions \(\lambda i : \text{int}. i \) and \(\lambda i : \text{int}. i + 1 \) are both \textit{int} \(\rightarrow \textit{int} \), but one is the implementation of \textit{get}, of type \textit{Counter} \(\rightarrow \textit{int} \) and the other is the implementation of \textit{inc}, of type \textit{Counter} \(\rightarrow \textit{Counter} \).

We now define the operational semantics. We add two new evaluation contexts, and one evaluation rule for unpacking an existential value.

\[
E ::= \cdots | \text{pack} \{ \tau_1, E \} \text{ as } \exists X. \tau_2 | \text{unpack} \{ X, x \} = E \text{ in } e
\]

\[
\text{unpack} \{ X, x \} = (\text{pack} \{ \tau_1, v \} \text{ as } \exists Y. \tau_2) \text{ in } e \longrightarrow e(v/x)\{\tau_1/X\}
\]

The new typing rules make sure that existential values are used correctly. Note that code using an existential value \(e \) in \textit{unpack} \(\{ X, x \} = e_1 \text{ in } e_2 \) does not know the witness type of the existential value of type \(\exists X. \tau_1 \).

\[
\Delta, \Gamma \vdash e : \tau_2\{\tau_1/X\} \\
\Delta, \Gamma \vdash \text{pack} \{ \tau_1, e \} \text{ as } \exists X. \tau_2 : \exists X. \tau_2
\]
\[
\begin{array}{c}
\Delta, \Gamma \vdash e_1 : \exists X. \tau_1 \quad X \not\in \Delta \quad \Delta \cup \{X\}, \Gamma, x : \tau_1 \vdash e_2 : \tau_2 \quad \Delta \vdash \tau_2 \text{ ok} \\
\hline
\Delta, \Gamma \vdash \text{unpack } \{X, x\} = e_1 \text{ in } e_2 : \tau_2
\end{array}
\]

\[
\begin{array}{c}
\Delta \cup \{X\} \vdash \tau \text{ ok} \\
\hline
\Delta \vdash \exists X. \tau \text{ ok}
\end{array}
\]

Note that we define well-formedness of existential types, similar to well-formedness of universal types. In the typing rule for \(\text{unpack } \{X, x\} = e_1 \text{ in } e_2\), note that we have the premises \(X \not\in \Delta\) and \(\Delta \vdash \tau_2 \text{ ok}\). The first ensures that \(X\) is not currently a type variable in scope (and we can alpha-vary it to ensure that this holds true). Why do we need the premise \(\Delta \vdash \tau_2 \text{ ok}\)?