1 Functional Reactive Programming

Consider the core calculus for Elm, presented in Lecture 24. Let \(i \) be a signal of integers (i.e., \(i \) has type \texttt{signal int}).

(a) Write a program that computes the factorial of the current value of \(i \). That is, the type of your program should be \texttt{signal int}, where the current value of the signal should be the factorial of the current value of \(i \). (Assume that you have whatever arithmetic operations you need.)

(b) Write a program that computes a signal that is the sum of all of the values of \(i \). That is, the type of your program should be \texttt{signal int}, where the current value of the signal should be the sum of all values that signal \(i \) took on. (Hint: use \texttt{foldp}. Assume that you have whatever arithmetic operations you need.)

(c) Write a program that computes a signal that is the sum of the current and the previous value of \(i \). Hint: you may assume that you have pairs.

(d) Write a program that attempts to use a signal of signals of integers. That is, write an expression that should have type \texttt{signal signal int}. Check to make sure that this expression is \textit{not} well typed.

(e) Show the first phase evaluation of the following program. Assume that \(i \) and \(j \) have type \texttt{signal int}.

\[
\begin{align*}
\text{let } \text{mul} &= \lambda a: \texttt{int}. \lambda b: \texttt{int}. \lambda c: \texttt{int}. a \times (b + c) \text{ in} \\
\text{let } \text{comb} &= \lambda x: \texttt{signal int}. \lambda y: \texttt{signal int}. \texttt{lift2 (mul) x y in}
\end{align*}
\]

\[
\begin{align*}
\text{let } t &= \text{comb } i \ j \text{ in} \\
\text{let } u &= \text{foldp (mul) 0 } t \text{ in} \\
\text{comb } i \ u
\end{align*}
\]

For the final term that is the result of the first phase evaluation of the program, draw a signal graph that shows the signals the program computes.

As a bonus, try the second phase evaluation of the program, assuming that the initial value of \(j \) is 1, and input signal \(i \) takes on the values 1, 2, 3, 4, \ldots.