1 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 12, §1.1).

(a) Write a program that constructs two values of type \(\text{int} + (\text{int} \to \text{int}) \), one using left injection, and one using right injection.

(b) Write a function that takes a value of type \(\text{int} + (\text{int} \to \text{int}) \) and if the value is an integer, it adds 7 to it, and if the value is a function it applies the function to 42.

(c) Give a typing derivation for the following program.

\[
\lambda p : (\text{unit} \to \text{int}) \times (\text{int} \to \text{int}). \lambda x : \text{unit}. \text{case } x \text{ of } \#1 p | \#2 p
\]

(d) Write a program that uses the term in part (c) above to produce the value 42.

2 Recursion

(a) Use the \(x : e \) expression to write a function that takes a natural number \(n \) and returns the sum of all even natural numbers less than or equal to \(n \). (You can assume you have appropriate integer comparison operators, and also a modulus operator.)

(b) Try executing your program by applying it to the number 5.

(c) Give a typing derivation for the following program. What happens if you execute the program?

\[
\mu p : (\text{int} \to \text{int}) \times (\text{int} \to \text{int}). (\lambda n : \text{int}. n + 1, \#1 p)
\]

3 References

(a) Give a typing derivation for the following program.

\[
\text{let } a : \text{int} \text{ ref } = \text{ref } 4 \text{ in} \\
\text{let } b : \text{int} \text{ ref } = \text{ref } \lambda x : \text{int}. x + 38 \text{ in} \\
!b !a
\]

(b) Execute the program above for 4 small steps, to get configuration \((e, \sigma) \). What is an appropriate \(\Sigma \) such that \(\emptyset, \Sigma \vdash e : \tau \) and \(\Sigma \vdash \sigma ? \)