
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Definitional translation

Lecture 9 Tuesday, February 20, 2018

1 Definitional translation

We saw that the denotational semantics of IMP defined the meaning of IMP commands as mathematical
functions from stores to stores. We described denotational semantics as being like compilation, from IMP
to mathematics. We now consider definitional translation, where we define the meaning of language con-
structs by translation to another language. This is a form of denotational semantics, but instead of the target
language being mathematics, it is a simpler programming language. Note that definitional translation does
not necessarily produce clean or efficient code; rather, it defines the meaning of the source language in
terms of the target language.

In this lecture, we will consider a number of language features, define an operational semantics for them,
and then give an alternate semantics by translation to a simpler language. We first introduce evaluation
contexts to help us present the new language features succinctly.

1.1 Evaluation contexts

Recall the syntax and CBV operational semantics for the lambda calculus.

e ::= x | λx. e | e1 e2
v ::= λx. e

e1 −→ e′1

e1 e2 −→ e′1 e2

e −→ e′

v e −→ v e′
β-REDUCTION

(λx. e) v −→ e{v/x}

Of the operational semantics rules, only the β-reduction rule told us how to “reduce” an expression;
the other two rules were simply telling us the order to evaluate expressions in, i.e., first evaluate the left
hand side of an application to a value, then evaluate the right hand side of an application to a value. The
operational semantics of many of the languages we will consider have this feature: there are two kinds of
rules, one kind specifying evaluation order, and the other kind specifying the “interesting” reductions.

Evaluation contexts provide us with a mechanism to separate out these two kinds of rules. An evaluation
context E (sometimes written E[·]) is an expression with a “hole” in it, that is with a single occurrence of
the special symbol [·] (called the “hole”) in place of a subexpression. Evaluation contexts are defined using
a BNF grammar that is similar to the grammar used to define the language. The following grammar defines
evaluation contexts for the pure CBV lambda calculus.

E ::= [·] | E e | v E

We write E[e] to mean the evaluation context E where the hole has been replaced with the expression
e. The following are examples of evaluation contexts, and evaluation contexts with the hole filled in by an
expression.

E1 = [·] (λx. x) E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·] E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y)) E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))

Using evaluation contexts, we can define the evaluation semantics for the pure CBV lambda calculus
with just two rules, one for evaluation contexts, and one for β-reduction.

Lecture 9 Definitional translation

CTXT
e −→ e′

E[e] −→ E[e′]
β-REDUCTION

(λx. e) v −→ e{v/x}

Note that the evaluation contexts for the CBV lambda calculus ensure that we evaluate the left hand
side of an application to a value, and then evaluate the right hand side of an application to a value before
applying β-reduction.

In the example above, E1[y] is a valid λ-calculus term, namely y (λx. x). But note that since variables
cannot be reduced further, the evaluation gets stuck as neither, CTXT nor β-REDUCTION can be applied.
This is same as our previous definition of operational semantics.

Example. Let’s consider the evaluation of the expression e0 = ((λx. x + 30) (5 + 2)) + 5. (For clarity, we
assume in this example that we have integers and addition, and that the evaluation contexts are given by
E ::= [·] | E e | v E | E + e | v + E.)

Intuitively, the first step will reduce 5+2 to 7. Consider the evaluation context E0 = ((λx. x+30) [·])+5,
and note that E0[5 + 2] (i.e., using 5 + 2 to fill the hole in E0) is e0. So, using the context rule, we can derive
the following:

CTXT
5 + 2 −→ 7

((λx. x+ 30) (5 + 2)) + 5 −→ ((λx. x+ 30) 7) + 5

Note that this rule is an instantiation of the rule CTXT where we use context E0.
Now consider evaluating ((λx. x + 30) 7) + 5 one step. We can use a context E1 = [·] + 5 to instantiate

the rule CTXT and derive the following small step.

CTXT

β-REDUCTION
(λx. x+ 30) 7 −→ 7 + 30

((λx. x+ 30) 7) + 5 −→ (7 + 30) + 5

We can use that same context E1 to instantiate CTXT again and derive the following small step.

CTXT
7 + 30 −→ 37

(7 + 30) + 5 −→ 37 + 5

Finally, we can derive 37 + 5 −→ 42 directly using the inference rule for addition (which we haven’t
shown, but used in some of the previous derivations):

37 + 5 −→ 42

We can also specify the operational semantics of CBN lambda calculus using evaluation contexts:

E ::= [·] | E e
CTXT

e −→ e′

E[e] −→ E[e′]
β-REDUCTION

(λx. e1) e2 −→ e1{e2/x}

We’ll see the benefit of evaluation contexts as we see languages with more syntactic constructs.

1.2 Multi-argument functions and currying

Our syntax for functions restricted us to function that have a single argument: λx. e. We could define a
language that allows functions to have multiple arguments.

e ::= x | λx1, . . . , xn. e | e0 e1 . . . en

Page 2 of 5

Lecture 9 Definitional translation

Here, a function λx1, . . . , xn. e takes n arguments, with names x1 through xn. In a multi argument ap-
plication e0 e1 . . . en, we expect e0 to evaluate to an n-argument function, and e1, . . . , en are the arguments
that we will give the function.

We can define a CBV operational semantics for the multi-argument lambda calculus as follows.

E ::= [·] | v0 . . . vi−1 E ei+1 . . . en

e −→ e′

E[e] −→ E[e′]

β-REDUCTION
(λx1, . . . , xn. e0) v1 . . . vn −→ e0{v1/x1}{v2/x2} . . . {vn/xn}

The evaluation contexts ensure that we evaluate a multi-argument application e0 e1 . . . en by evaluating
each expression from left to right down to a value.

Now, the multi-argument lambda calculus isn’t any more expressive that the pure lambda calculus. We
can show this by showing how any multi-argument lambda calculus program can be translated into an
equivalent pure lambda calculus program. We define a translation function T [[·]] that takes an expression
in the multi-argument lambda calculus and returns an equivalent expression in the pure lambda calculus.
That is, if e is a multi-argument lambda calculus expression, T [[e]] is a pure lambda calculus expression.

We define the translation as follows.

T [[x]] = x

T [[λx1, . . . , xn. e]] = λx1. . . . λxn. T [[e]]
T [[e0 e1 e2 . . . en]] = (. . . ((T [[e0]] T [[e1]]) T [[e2]]) . . . T [[en]])

This process of rewriting a function that takes multiple arguments as a chain of functions that each take
a single argument is called currying. Consider a mathematical function that takes two arguments, the first
from domain A and the second from domain B, and returns a result from domain C. We could describe
this function, using mathematical notation for domains of functions, as being an element of A × B → C.
Currying this function produces a function that is an element of A→ (B → C). That is, the curried version
of the function takes an argument from domain A, and returns a function that takes an argument from
domain B and produces a result of domain C.

1.3 Products and let

We introduce two useful language features to the lambda calculus: products and let expressions.
A product is a pair of expressions (e1, e2). If e1 and e2 are both values, then we regard the product as

also being a value. (That is, we cannot further evaluate a product if both elements are values.)
Given, a product, we can access the first or second element using the operators #1 and #2 respectively.

That is, #1 (v1, v2) −→ v1 and #2 (v1, v2) −→ v2. (Other common notation for projection includes π1 and
π2, and fst and snd.)

More formally, we define the syntax of lambda calculus with products and let expressions as follows.
Values in this language are either functions or pairs of values.

e ::= x | λx. e | e1 e2
| (e1, e2) | #1 e | #2 e

| let x = e1 in e2
v ::= λx. e | (v1, v2)

We define a small-step CBV operational semantics for the language using evaluation contexts.

Page 3 of 5

Lecture 9 Definitional translation

E ::= [·] | E e | v E | (E, e) | (v,E) | #1 E | #2 E | let x = E in e2

e −→ e′

E[e] −→ E[e′]
β-REDUCTION

(λx. e) v −→ e{v/x}

#1 (v1, v2) −→ v1 #2 (v1, v2) −→ v2

let x = v in e −→ e{v/x}

We can give an equivalent semantics by translation to the pure CBV lambda calculus. Note that we
encode a pair (e1, e2) as a value that takes a function f , and applies f to v1 and v2, where v1 and v2 are the
result of evaluating e1 and e2 respectively. The projection operators pass a function to the encoding of pairs
that selects either the first or second element as appropriate.

Note also that the expression let x = e1 in e2 is equivalent to the application (λx. e2) e1.

T [[x]] = x

T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] T [[e2]]
T [[(e1, e2)]] = (λx. λy. λf. f x y) T [[e1]] T [[e2]]
T [[#1 e]] = T [[e]] (λx. λy. x)
T [[#2 e]] = T [[e]] (λx. λy. y)

T [[let x = e1 in e2]] = (λx. T [[e2]]) T [[e1]]

1.4 CBN to CBV

We’ve seen semantics for both the call-by-name lambda calculus and the call-by-value lambda calculus.
We can translate a call-by-name program into a call-by-value program. In CBV, arguments to functions
are evaluated before the function is applied; in CBN, functions are applied as soon as possible. In the
translation, we delay the evaluation of arguments by wrapping them in a function. This is called a thunk:
wrapping a computation in a function to delay its evaluation.

Since arguments to functions are turned into thunks, when we want to use an argument in a function
body, we need to evaluate the thunk. We do so by applying the thunk (which is simply a function); it
doesn’t matter what we apply the thunk to, since the thunk’s argument is never used.

T [[x]] = x (λy. y)

T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] (λz. T [[e2]]) z is not a free variable of e2

It may be worth thinking about translation in the opposite direction i.e. CBV to CBN. One approach is
to use continuations which will be introduced in the next lecture.

1.5 Adequacy of translation

We’ve presented several translations of languages. In each case, we had a semantics defined for both the
source and target language. We would like the translation to be correct, that is, to preserve the meaning of
source programs.

Page 4 of 5

Lecture 9 Definitional translation

More precisely, we would like an expression e in the source language to evaluate to a value v if and only
if the translation of e evaluates to a value v′ such that v′ is “equal to” v.

What exactly it means for v′ to be “equal to” v will depend on the translation. Sometimes, it will mean
that v′ is the translation of v; other times, it will mean that v′ is somehow equivalent to the translation
of v. In particular, we often need to define equivalence on functions. One possible solution is that two
functions are equivalent if they agree on the result when applied to any value of a base type (e.g., integers
or booleans). The idea is that if two functions disagree when passed a more complex value (say, a function),
then we could write a program that uses these functions to produce functions that disagree on values of
base types.

There are two criteria for a translation to be adequate: soundness and completeness. For clarity, let’s
suppose that Expsrc is the set of source language expressions, and that −→src and −→trg are the evaluation
relations for the source and target languages respectively.

A translation is sound if every target evaluation represents a source evaluation:

Soundness: ∀e ∈ Expsrc. if T [[e]] −→∗trg v
′ then ∃v. e −→∗src v and v′ equivalent to v

A translation is complete if every source evaluation has a target evaluation.

Completeness: ∀e ∈ Expsrc. if e −→∗src v then ∃v′. T [[e]] −→∗trg v
′ and v′ equivalent to v

Page 5 of 5

