
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

Week 3: Tue Feb 6–Fri Feb 9, 2018

1 Induction

Let’s inductively define a set of integers Quux with the following inference rules.

RULE1
8 ∈ Quux

RULE2
5 ∈ Quux

RULE3
a ∈ Quux b ∈ Quux

c ∈ Quux
c = a+ b+ 1

(a) Of the rules above (i.e., RULE1, RULE2, and RULE3), which are axioms and which are inductive rules?

Answer: The rules RULE1 and RULE2 are axioms: they have no premises. Rule RULE3 is an inductive
rule: it has one or more premises.

(b) Give a derivation showing that 11 is in the set Quux.

Answer:

RULE3

RULE2
5 ∈ Quux

RULE2
5 ∈ Quux

11 ∈ Quux

(c) Give a derivation showing that 20 is in the set Quux.

Answer:

RULE3

RULE3

RULE2
5 ∈ Quux

RULE2
5 ∈ Quux

11 ∈ Quux
RULE1

8 ∈ Quux

20 ∈ Quux

(d) Write down the inductive reasoning principle for Quux. That is, if you wanted to prove that for some
property P , for all a ∈ Quux we have P (a), what would you need to show? (See Lecture 3 §2.2 and
§2.3.)

Answer: For any property P ,
If

• RULE1: P (8) holds.

• RULE2: P (5) holds.



Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

• RULE3: For all a ∈ Quux and all 4 ∈ Quux, if P (a) and P (b) then P (c) where c = a+ b+ 1.

then

for all a ∈ Quux, P (a) holds.

(e) Prove that for all a ∈ Quux, there exists i ∈ Z such that a = 3× i− 1.

Make sure that you follow the Recipe for Inductive Proofs! See Lecture 3 §2.5. What set are you
inducting on? What is the property you are trying to prove? Go through each case.

Answer: The property we will prove for all a ∈ Quux is P (a) = ∃i ∈ Z. a = 3 × i − 1. We proceed by
induction on the derivation of a ∈ Quux.

• RULE1. Here, a = 8. Note that 8 = 3× 3− 1, and so P (a) holds, as required.

• RULE2. Here, a = 5. Note that 5 = 3× 2− 1, and so P (a) holds, as required.

• RULE3. Here, a = b + c + 1 where b ∈ Quux and c ∈ Quux. Assume that P (b) and P (c). That is,
there exists some i and j such that b = 3× i− 1 and c = 3× j − 1.
We have

a = b+ c+ 1

= (3× i− 1) + (3× j − 1) + 1

= 3× (i+ j)− 1

So there exists an integer k (namely, k = i+ j) such that a = 3× k− 1, and so P (a) holds, as required.

(f) Is 2 in the set Quux? If so, give a derivation proving it.

Answer: 2 is not in the set Quux. How would you go about proving that this is the case? (Hint: could you
prove some property that holds true of all elements of Quux, and that property isn’t true of 2?) Turn page
around for an answer... (Whoa, answers inside answers; it’s answers all the way down...)

Provethat∀n∈Quux.n>3.Sinceitisnotthecasethat2>3,wehavethat26∈Quux.

2 Small-step operational semantics

Consider the small-step operational semantics for the language of arithmetic expressions (Lectures 1 and
2). Let σ0 be a store that maps all program variables to zero.

(a) Show a derivation that 〈3 + (5× bar), σ0〉 −→ 〈3 + (5× 0), σ0〉.

Answer:

RADD

RMUL

VAR
〈bar, σ0〉 −→ 〈0, σ0〉

〈5× bar, σ0〉 −→ 〈5× 0, σ0〉
〈3 + (5× bar), σ0〉 −→ 〈3 + (5× 0), σ0〉

Page 2 of 8



Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

(b) What is the sequence of configurations that 〈foo := 5; (foo + 2) × 7, σ0〉 steps to? (You don’t need to
show the derivations for each step, just show what configuration 〈foo := 5; (foo+ 2)× 7, σ0〉 steps to
in one step, then two steps, then three steps, and so on, until you reach a final configuration.)

Answer:

〈foo := 5; (foo+ 2)× 7 , σ0 〉
−→ 〈(foo+ 2)× 7 , σ0[foo 7→ 5] 〉
−→ 〈(5 + 2)× 7 , σ0[foo 7→ 5] 〉
−→ 〈7× 7 , σ0[foo 7→ 5] 〉
−→ 〈49 , σ0[foo 7→ 5] 〉

(c) Find an integer n and store σ′ such that 〈((6+(foo := (bar := 3; 5); 1+bar))+bar)×foo, σ0〉 −→∗ 〈n, σ′〉.

Answer: Let’s step through the execution of the configuration, to find a final configuration.

〈((6 + (foo := (bar := 3; 5); 1 + bar)) + bar)× foo , σ0 〉
−→ 〈((6 + (foo := 5; 1 + bar)) + bar)× foo , σ0[bar 7→ 3] 〉
−→ 〈((6 + (1 + bar)) + bar)× foo , σ0[bar 7→ 3, foo 7→ 5] 〉
−→ 〈((6 + (1 + 3)) + bar)× foo , σ0[bar 7→ 3, foo 7→ 5] 〉
−→ 〈((6 + 4) + bar)× foo , σ0[bar 7→ 3, foo 7→ 5] 〉
−→ 〈(10 + bar)× foo , σ0[bar 7→ 3, foo 7→ 5] 〉
−→ 〈(10 + 3)× foo , σ0[bar 7→ 3, foo 7→ 5] 〉
−→ 〈13× foo , σ0[bar 7→ 3, foo 7→ 5] 〉
−→ 〈13× 5 , σ0[bar 7→ 3, foo 7→ 5] 〉
−→ 〈65 , σ0[bar 7→ 3, foo 7→ 5] 〉

(d) Is the relation −→ reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?

(For each of these questions, if the answer is “no”, what is a suitable counterexample? If any of the
answers are “yes”, think about how you would prove it.)

Answer: The relation −→ is not reflexive. A relation R is reflexive if for all x in the domain of R we have
x R x. Consider, for example, 〈42, σ0〉. It is not the case that 〈42, σ0〉 −→ 〈42, σ0〉, and so−→ is not reflexive.

The relation −→ is not symmetric. A relation R is symmetric if for all x, y such that x R y we have y R x.
Consider, for example, 〈39 + 3, σ0〉 and 〈42, σ0〉. We have 〈39 + 3, σ0〉 −→ 〈42, σ0〉 but we do not have
〈42, σ0〉 −→ 〈39 + 3, σ0〉. So −→ is not symmetric.

The relation −→ is anti-symmetric. A relation R is anti-symmetric if for all distinct x and y we do not
have both x R y and y R x. In our setting, if we have (distinct) configurations 〈e, σ〉 and 〈e′, σ′〉 such that
〈e, σ〉 −→ 〈e′, σ′〉, then we do not have that 〈e′, σ′〉 −→ 〈e, σ〉.
Here is one way to prove this. If we did have distinct configurations 〈e, σ〉 and 〈e′, σ′〉 such that 〈e, σ〉 −→
〈e′, σ′〉 and 〈e′, σ′〉 −→ 〈e, σ〉, then we could construct an infinite sequence of small steps:

〈e, σ〉 −→ 〈e′, σ′〉 −→ 〈e, σ〉 −→ 〈e′, σ′〉 −→ 〈e, σ〉 −→ 〈e′, σ′〉 −→ . . .

Page 3 of 8



Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

But this would contradict the property that all programs in our language of arithmetic expressions with
assignments terminate!

The relation −→ is not transitive. A relation R is transitive if for all x, y, z, if x R y and y R z then x R z.
Consider the configurations 〈(2 + 3) × 7, σ0〉 and 〈5 × 7, σ0〉 and 〈42, σ0〉. We have 〈(2 + 3) × 7, σ0〉 −→
〈5× 7, σ0〉 and 〈5× 7, σ0〉 −→ 〈42, σ0〉 but we do not have 〈(2 + 3)× 7, σ0〉 −→ 〈42, σ0〉.

3 Large-step operational semantics

Consider the large-step operational semantics for the language of arithmetic expressions (Lecture 4). Let σ0
be a store that maps all program variables to zero.

(a) Show a derivation that 〈3 + (5× bar), σ0〉 ⇓ 〈3, σ0〉.

Answer:

〈3, σ0〉 ⇓ 〈3, σ0〉
〈5, σ0〉 ⇓ 〈5, σ0〉 〈bar, σ0〉 ⇓ 〈0, σ0〉

〈5× bar, σ0〉 ⇓ 〈0, σ0〉
〈3 + (5× bar), σ0〉 ⇓ 〈3, σ0〉

(b) Find an integer n and store σ′ such that 〈foo := 5; (foo+ 2)× 7, σ0〉 ⇓ 〈n, σ′〉.
If you have time and a big piece of paper, give the derivation of 〈foo := 5; (foo+ 2)× 7, σ0〉 ⇓ 〈n, σ′〉.

Answer: We have 〈foo := 5; (foo+ 2)× 7, σ0〉 ⇓ 〈49, σ0[foo 7→ 5]〉.
In the following derivation, let σ′ = σ0[foo 7→ 5].

〈5, σ0〉 ⇓ 〈5, σ0〉

〈foo, σ′〉 ⇓ 〈5, σ′〉 〈2, σ′〉 ⇓ 〈2, σ′〉
〈foo+ 2, σ′〉 ⇓ 〈7, σ′〉 〈7, σ′〉 ⇓ 〈7, σ′〉

〈(foo+ 2)× 7, σ′〉 ⇓ 〈49, σ′〉
〈foo := 5; (foo+ 2)× 7, σ0〉 ⇓ 〈49, σ′〉

(c) Is the relation ⇓ reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?

(For each of these questions, if the answer is “no”, what is a suitable counterexample? If any of the
answers are “yes”, think about how you would prove it.)

Answer: The relation ⇓ is not reflexive. A relation R is reflexive if for all x in the domain of R we have
x R x. Consider, for example, 〈3 + 4, σ0〉. It is not the case that 〈3 + 4, σ0〉 ⇓ 〈3 + 4, σ0〉, and so ⇓ is not
reflexive.

The relation ⇓ is not symmetric. A relation R is symmetric if for all x, y such that x R y we have y R x.
Consider, for example, 〈39 + 3, σ0〉 and 〈42, σ0〉. We have 〈39 + 3, σ0〉 ⇓ 〈42, σ0〉 but we do not have
〈42, σ0〉 ⇓ 〈39 + 3, σ0〉. So ⇓ is not symmetric.

Page 4 of 8



Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

The relation ⇓ is not anti-symmetric. A relation R is anti-symmetric if for all distinct x and y we do not
have both x R y and y R x. In our setting, if we have (distinct) configurations 〈e, σ〉 and 〈n, σ′〉 such that
〈e, σ〉 ⇓ 〈n, σ′〉 and e′ is not an integer, then we do not have that 〈n, σ′〉 ⇓ 〈e, σ〉.
This can be proven by inspection of the rules, or by induction on the derivation of 〈e, σ〉 ⇓ 〈n, σ′〉.
The relation ⇓ is transitive. A relation R is transitive if for all x, y, z, if x R y and y R z then x R z. To
prove this, suppose that 〈e, σ〉 ⇓ 〈e′, σ′〉 and 〈e′, σ′〉 ⇓ 〈e′′, σ′′〉. By examination of the rules, we have that
e′ is an integer. Thus, by the rule INT we have 〈e′, σ′〉 ⇓ 〈e′, σ′〉. Moreover, by the determinism of the
arithmetic language (which we discussed in Lecture 2), we have that e′ = e′′ and σ′ = σ′′. Thus we have that
〈e, σ〉 ⇓ 〈e′′, σ′′〉 as required.

4 IMP

Consider the small-step operational semantics for IMP given in Lecture 5. Let σ0 be a store that maps all
program variables to zero.

(a) Find a configuration 〈c, σ′〉 such that 〈if 8 < 6 then foo := 2 else bar := 8, σ0〉 −→ 〈c, σ′〉 and give a
derivation showing that 〈if 8 < 6 then foo := 2 else bar := 8, σ0〉 −→ 〈c, σ′〉.

Answer:

〈8 < 6, σ0〉 −→ 〈false, σ0〉
〈if 8 < 6 then foo := 2 else bar := 8, σ0〉 −→ 〈if false then foo := 2 else bar := 8, σ0〉

(b) What is the sequence of configurations that

〈foo := bar + 3; if foo < bar then skip else bar := 1, σ0〉

steps to? (You don’t need to show the derivations for each step, just show what configuration 〈foo :=
bar + 3; if foo < bar then skip else bar := 1, σ0〉 steps to in one step, then two steps, then three steps,
and so on, until you reach a final configuration.)

Answer:

〈foo := bar + 3; if foo < bar then skip else bar := 1, σ0〉
−→ 〈foo := 0 + 3; if foo < bar then skip else bar := 1, σ0〉
−→ 〈foo := 3; if foo < bar then skip else bar := 1, σ0〉
−→ 〈if foo < bar then skip else bar := 1, σ0[foo 7→ 3]〉
−→ 〈if 3 < bar then skip else bar := 1, σ0[foo 7→ 3]〉
−→ 〈if 3 < 0 then skip else bar := 1, σ0[foo 7→ 3]〉
−→ 〈if false then skip else bar := 1, σ0[foo 7→ 3]〉
−→ 〈bar := 1, σ0[foo 7→ 3]〉
−→ 〈skip, σ0[foo 7→ 3, bar 7→ 1]〉

Page 5 of 8



Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

Now consider the large-step operational semantics for IMP given in Lecture 5. Let σ0 be a store that
maps all program variables to zero.

(c) Find a store σ′ such that 〈while foo < 3 do foo := foo+ 2, σ0〉 ⇓ σ′ and give a derivation showing that
〈while foo < 3 do foo := foo+ 2, σ0〉 ⇓ σ′.

Answer:

In the following, let σ2 = σ0[foo 7→ 2] and σ4 = σ0[foo 7→ 4].

〈foo, σ0〉 ⇓ 0 〈3, σ0〉 ⇓ 3

〈foo < 3, σ0〉 ⇓ true

〈foo, σ0〉 ⇓ 0 〈2, σ0〉 ⇓ 2

〈foo+ 2, σ0〉 ⇓ 2

〈foo := foo+ 2, σ0〉 ⇓ σ2 D1

〈while foo < 3 do foo := foo+ 2, σ0〉 ⇓ σ4

where D1 is the following derivation

〈foo, σ2〉 ⇓ 2 〈3, σ2〉 ⇓ 3

〈foo < 3, σ2〉 ⇓ true

〈foo, σ2〉 ⇓ 2 〈2, σ2〉 ⇓ 2

〈foo+ 2, σ2〉 ⇓ 4

〈foo := foo+ 2, σ2〉 ⇓ σ4 D2

〈while foo < 3 do foo := foo+ 2, σ2〉 ⇓ σ4

where D2 is the following derivation

〈foo, σ2〉 ⇓ 4 〈3, σ2〉 ⇓ 3

〈foo < 3, σ2〉 ⇓ false

〈while foo < 3 do foo := foo+ 2, σ4〉 ⇓ σ4

(d) Suppose we extend boolean expressions with negation.

b ::= · · · | not b

(i) Give an inference rule or inference rules that show the (large step) evaluation of not b.

Answer:

〈b, σ〉 ⇓ false

〈not b, σ〉 ⇓ true

〈b, σ〉 ⇓ true

〈not b, σ〉 ⇓ false

(ii) Show that if b then c1 else c2 is equivalent to if not b then c2 else c1. (See Lecture 5.)

Answer: if b then c1 else c2 is equivalent to if not b then c2 else c1 if for all stores σ and σ′, we
have

〈if b then c1 else c2, σ〉 ⇓ σ′ if and only if 〈if not b then c2 else c1, σ〉 ⇓ σ′

Page 6 of 8



Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

Let’s show the forward direction. Suppose we have σ and σ′ and 〈if b then c1 else c2, σ〉 ⇓ σ′. We
need to show that 〈if not b then c2 else c1, σ〉 ⇓ σ′.
Because 〈if b then c1 else c2, σ〉 ⇓ σ′, there is a finite derivation whose conclusion is 〈if b then c1 else c2, σ〉 ⇓
σ′. Let’s think about what inference rules could have been used to conclude 〈if b then c1 else c2, σ〉 ⇓
σ′. There are only two possibilities: the rule for conditionals where the boolean expression b evaluates
to true, and the rule for conditionals where the boolean condition b evaluates to false. That is, the
derivation of 〈if b then c1 else c2, σ〉 ⇓ σ′ has one of the following two forms.

...

〈b, σ〉 ⇓ true

...

〈c1, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′

...

〈b, σ〉 ⇓ false

...

〈c2, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′

Let’s consider these two cases in turn. Suppose that 〈b, σ〉 ⇓ true. Then we can reuse the derivations
...

〈b, σ〉 ⇓ true and

...

〈c1, σ〉 ⇓ σ′ to construct the following proof tree, showing that 〈if not b then c2 else c1, σ〉 ⇓
σ′.

...

〈b, σ〉 ⇓ true

〈not b, σ〉 ⇓ false

...

〈c1, σ〉 ⇓ σ′

〈if not b then c2 else c1, σ〉 ⇓ σ′

Now consider the other case, where 〈b, σ〉 ⇓ false. Then we can reuse the derivations

...

〈b, σ〉 ⇓ false and
...

〈c2, σ〉 ⇓ σ′ to construct the following proof tree, showing that 〈if not b then c2 else c1, σ〉 ⇓ σ′.
...

〈b, σ〉 ⇓ false

〈not b, σ〉 ⇓ true

...

〈c2, σ〉 ⇓ σ′

〈if not b then c2 else c1, σ〉 ⇓ σ′

The reverse direction is almost exactly the same. Suppose we have σ and σ′ and 〈if not b then c2 else c1, σ〉 ⇓
σ′. We need to show that 〈if b then c1 else c2, σ〉 ⇓ σ′.
Because 〈if not b then c2 else c1, σ〉 ⇓ σ′, there is a finite derivation whose conclusion is 〈if not b then c2 else c1, σ〉 ⇓
σ′. Let’s think about what inference rules could have been used to conclude 〈if not b then c2 else c1, σ〉 ⇓
σ′. There are only two possibilities: the rule for conditionals where the boolean expression not b evalu-
ates to true, and the rule for conditionals where the boolean condition not b evaluates to false. That is,
the derivation of 〈if not b then c2 else c1, σ〉 ⇓ σ′ has one of the following two forms.

...

〈b, σ〉 ⇓ true

〈not b, σ〉 ⇓ false

...

〈c1, σ〉 ⇓ σ′

〈if not b then c2 else c1, σ〉 ⇓ σ′

...

〈b, σ〉 ⇓ false

〈not b, σ〉 ⇓ true

...

〈c2, σ〉 ⇓ σ′

〈if not b then c2 else c1, σ〉 ⇓ σ′

Let’s consider these two cases in turn. Suppose that 〈not b, σ〉 ⇓ false. Then we can reuse the deriva-

tions

...

〈b, σ〉 ⇓ true and

...

〈c1, σ〉 ⇓ σ′ to construct the following proof tree, showing that 〈if b then c1 else c2, σ〉 ⇓
σ′.

Page 7 of 8



Induction; Small-step operational semantics; Large-step operational semantics; IMP
Section and Practice Problems

...

〈b, σ〉 ⇓ true

...

〈c1, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′

Now consider the other case, where 〈not b, σ〉 ⇓ true. Then we can reuse the derivations

...

〈b, σ〉 ⇓ false

and

...

〈c2, σ〉 ⇓ σ′ to construct the following proof tree, showing that 〈if b then c1 else c2, σ〉 ⇓ σ′.
...

〈b, σ〉 ⇓ false

...

〈c2, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′

Page 8 of 8


