Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Denotational Semantics; Lambda Calculus Basics
Section and Practice Problems

Week 4: Tue Feb 13-Fri Feb 16, 2018

1 Denotational Semantics

(a) Give the denotational semantic for each of the following IMP programs. That is, express the meaning
of each of the following programs as a function from stores to stores.

(i) a:=b+5;a:=axb
(ii) if foo < 0 then bar := foo X foo else bar := foo x foo x foo

(iii) bar := foo x foo; if foo < 0 then skKip else bar := bar x foo
(Hint: the answer to this question should be the same function as the answer to 1(b)ii above.
You may have written the function down differently, but it should be the same mathematical
function.)

(iv) a:=0;b=0;whilea<3dob:=b+c
(b) Consider the following loop.
while foo < 5 do foo := foo + 1; bar := bar + 1

We will consider the denotational semantics of this loop.

(i) What is the denotational semantics of the loop guard foo < 5? That is, what is the function
Bffoo < 5]?

(if) What is the denotational semantics of the loop body foo := foo + 1; bar := bar + 1? That is, what
is the function C[foo := foo + 1; bar := bar + 1]?

(iii) Recall that the semantics of the loop is the fixed point of the following higher-order function F.
(This is from Section 1.2 of Lecture 6, where we have provided a specific loop guard b and loop
body c for the higher-order function F3).

F : (Store — Store) — (Store — Store)
F(f)={(o,0) | (o,false) € B[foo < 5]} U
{(o,0") | (0,true) € BJfoo < 5]A
0", ((0,0") € C[foo := foo + 1; bar := bar + 1] A (¢”,0") € f)}

That is, the semantics of the loop are:

C[while foo < 5 do foo := foo + 1; bar := bar + 1] = U F’((Z))
i>0
=Q0UF@)UFF@®)UFFEFEWD))U...
= fix(F)

Compute F(0), F(F(0)), and F(F(F(())).
In general, what is the domain of the partial function F*(0)? (Note that F*(0) is F applied to the
empty set i times, e.g., F(0) is F(F(F(0))).)

Denotational Semantics; Lambda Calculus Basics
Section and Practice Problems

2 Lambda Calculus Basics

(a) Variable Bindings Fully parenthesize each expression based on the standard parsing of A-calculus

expressions, i.e. you should parenthesize all applications and A abstractions. Then, draw a
around all binding occurrences of variables, underline all usage occurrence of variables, and circle all
free variables. For each bound usage occurrence, neatly draw an arrow to indicate its corresponding
binding occurrence. (You may also use other methods to indicate binding occurrences of variables,
usage occurrences of variables, free variables, and which uses correspond to which bindings.)

e d\a.zAz.ay
(Az.z) Ab.b Xa.aa
Ab.bXa.ab

o \z.zAz.z 2

Aa. Ab. (Aa.a) \b.a
xAr. x.x (A\x. x)

y (\y-y)(\y. 2)

(b) Alpha equivalence: Which of these three lambda-calculus expressions are alpha equivalent?

i Az.yAa.ax
ii. Ax.z \b.bzx
iii. Aa.y Xb.ba

(Hint: to figure out whether two expressions are alpha equivalent, you need to know which variables
are free and which variables are bound.)

(c) Evaluation For each of the following terms, do the following: (a) write the result of one step of the
call-by-value reduction of the term; (b) write the result of one step of the call-by-name reduction of the
term; and (c) write all possible results of one step under full 3-reduction. If the term cannot take a step,
please note that instead.

o (Az.dz.zx) (A\y.y)
e \a. Ab. (Ac.c) (M\d.d)
o Az.xzzxx)(A\r. \y.zy)
e Az \y.zy) (Aw. Az w z) (A\z. x))
o (Aa.(Ab.ba)a) (Az.2) (Aw.w)
(d) Suppose we have an applied lambda calculus with integers and addition. Write the sequence of

expressions that the following lambda calculus term evaluates to under call-by-value semantics. Then
do the same under call-by-name semantics.

M f(f8) (Az.a+17)

Page 2 of 2

