
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

References and continuations; Simply-typed lambda calculus; Type soundness
(Lectures 10-11)

Section and Practice Problems

Feb 27-Mar 2, 2018

1 References

(a) Evaluate the following program. (That is, show the sequence of configurations that the small-step
evaluation of the program will take. The initial store should by ∅, i.e., the partial function with an
empty domain.)

let a = ref 17 in let b = ref !a in !b+ (b := 8)

Answer:

〈let a = ref 17 in let b = ref !a in !b+ (b := 8), ∅〉 −→ 〈let b = ref !a in !b+ (b := 8), {(a, 17)}〉
−→ 〈let b = ref 17 in !b+ (b := 8), {(a, 17)}〉
−→ 〈!b+ (b := 8), {(a, 17), (b, 17)}〉
−→ 〈17 + (b := 8), {(a, 17), (b, 17)}〉
−→ 〈17 + 8, {(a, 17), (b, 8)}〉
−→ 〈25, {(a, 17), (b, 8)}〉

(b) Construct a program that represents the following binary tree, where an interior node of the binary
tree is represented by a value of the form (v, (`left , `right)), where v is the value of the node, `left is a
location that contains the left child, and `right is a location that contains the right child.

8

312

-1214

(It may be useful to define a function that creates internal nodes. Feel free to use let expressions to
make your program easier to read and write.)

Answer: Following the hint, we define a function that creates internal nodes:

let makeNode = λr. λtl. λtr. (r, (ref tl, ref tr)) in · · ·

and now the binary tree above can be constructed by filling in the · · · with:

let t′ = makeNode 12 14 (−12) in makeNode 8 t′ 3

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

2 Continuations

(a) Suppose we add let expressions to our CBV lambda-calculus. How would you define CPS[[let x =
e1 in e2]]? (Note, even though let x = e1 in e2 is equivalent to (λx. e2) e1, don’t use CPS[[(λx. e2) e1]], as
there is a better CPS translation of let x = e1 in e2. Why is that?)

Answer:
CPS[[let x = e1 in e2]]k = CPS[[e1]] (λx. CPS[[e2]] k)

(b) Translate the expression let f = λx. x + 1 in (f 19) + (f 21) into continuation-passing style. That is,
what is CPS[[let f = λx. x+ 1 in (f 19) + (f 21)]]?

(Use your definition of CPS[[let x = e1 in e2]] from above.)

Answer: Apologies for the small font. You can use the zoom feature in your PDF for better clarity.

CPS[[let f = λx. x+ 1 in (f 19) + (f 21)]]k

= CPS[[λx. x+ 1]] (λf. CPS[[(f 19) + (f 21)]]k)

= CPS[[λx. x+ 1]] (λf. CPS[[(f 19) + (f 21)]]k)

= (λf. CPS[[(f 19) + (f 21)]]k) (λx, k
′
. CPS[[x+ 1]]k

′
)

= (λf. CPS[[(f 19)]] (λv. CPS[[(f 21)]] (λw. k (v + w)))) (λx, k
′
. CPS[[x+ 1]]k

′
)

= (λf. CPS[[(f 19)]] (λv. CPS[[(f 21)]] (λw. k (v + w)))) (λx, k
′
. CPS[[x]] (λv. CPS[[1]] (λw. k′(v + w))))

= (λf. CPS[[(f 19)]] (λv. CPS[[(f 21)]] (λw. k (v + w)))) (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x)

= (λf. CPS[[f]] (λf ′
. CPS[[19]] (λv. f ′

v (λv. CPS[[(f 21)]] (λw. k (v + w)))))) (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x)

= (λf. (λf
′
. (λv. f

′
v (λv

′
. CPS[[(f 21)]] (λw

′
. k (v

′
+ w

′
)))) 19) f) (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

= (λf. (λf
′
. (λv. f

′
v (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 f

′
)) 19) f) (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

−→ (λf
′
. (λv. f

′
v (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 f

′
)) 19) (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

−→ (λv. (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x) v (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x))) 19

−→ (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x) 19 (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x))

−→ (λv. (λw. (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) (v + w)) 1) 19

−→ (λw. (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) (19 + w)) 1

−→ (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) (19 + 1)

−→ (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) 20

−→ (λf
′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (20 + w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

−→ λv
′′
. (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x) v

′′
(λw

′
. k (20 + w

′
)) 21

−→ (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x) 21 (λw

′
. k (20 + w

′
))

−→ (λv. (λw. (λw
′
. k (20 + w

′
)) (v + w)) 1) 21

−→ (λw. (λw
′
. k (20 + w

′
)) (21 + w)) 1

−→ (λw
′
. k (20 + w

′
)) (21 + 1)

−→ (λw
′
. k (20 + w

′
)) 22

−→ k (20 + 22)

−→ k 42

3 Simply-typed lambda calculus

(a) Add appropriate type annotations to the following expressions, and state the type of the expression.

(i) λa. a+ 4

Page 2 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

Answer: With minimal annotations:
λa : int. a+ 4

and the expression has type int→ int.

(ii) λf. 3 + f ()

Answer: With minimal annotations:

λf :unit→ int. 3 + f ()

and the expression has type (unit→ int)→ int.

(iii) (λx. x) (λf. f (f 42))

Answer: With minimal annotations:

(λx : (int→ int)→ int. x) (λf : int→ int. f (f 42)).

Note that λx : (int→ int)→ int. x has type ((int→ int)→ int)→ ((int→ int)→ int).

The expression λf : int→ int. f (f 42) has type (int→ int)→ int.

The whole expression has type (int→ int)→ int.

(b) For each of the following expressions, give a derivation showing that the expression is well typed.

(i) (λf : int→ int. f 38) (λa : int. a+ 4)

Page 3 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

Answer:

T-A
PP

T-A
BS

T-A
PP

T-V
AR

f
: in

t →
int `

f
: in

t →
int

Γ
(f

)
=

int →
int

T-IN
T
f
: in

t →
int `

38
: in

t

f
: in

t →
int `

f
38

: in
t

`
λ
f
: in

t →
int.
f
38

: (
int →

int)
→

int

T-A
BS

T-A
DD

T-V
AR

a
: in

t `
a
: in

t

Γ
(a

)
=

int
T-IN

T
a
: in

t `
4
: in

t

a
: in

t `
a
+

4
: in

t

`
λ
a
: in

t.
a
+

4
: in

t →
int

`
(λ
f
: in

t →
int.
f
38

)
(λ
a
: in

t.
a
+

4)
: in

t

(ii) λg : (int→ int)→ (int→ int). g (λc : int. c+ 1) 7

Page 4 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

Answer: We have Γ = g : (int→ int)→ (int→ int) for succinctness.

T-A
BS

T-A
PP

T-A
PP

T-V
AR

Γ
`
g
: (

int →
int)

→
(in

t →
int)

Γ
ok

T-A
BS

T-A
DD

T-V
AR

Γ
, c

: in
t `
c
: in

t

Γ
ok

T-IN
T

Γ
, c

: in
t `

1
: in

t

Γ
, c

: in
t `
c
+

1
: in

t

Γ
`
λ
c
: in

t.
c
+

1
: in

t →
int

Γ
`
g
(λ
c
: in

t.
c
+

1)
: in

t →
int

Γ
ok

T-IN
T

Γ
`

7
: in

t

Γ
`
g
(λ
c
: in

t.
c
+

1)
7
: in

t

`
λ
g
: (

int →
int)

→
(in

t →
int).
g
(λ
c
: in

t.
c
+

1)
7
:(

int →
int)

→
(in

t →
int)

→
int

(iii) λf : int→ int. λg : int→ int. λx : int. g (f x)

Page 5 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

Answer:

T-A
BS

T-A
BS

T-A
BS

T-A
PP

T-V
AR

f
: in

t →
int,
g
: in

t →
int,
x
: in

t `
g
: in

t →
int

ok
T-A

PP

T-V
AR

f
: in

t →
int,
g
: in

t →
int,
x
: in

t `
f
: in

t →
int

ok
T-V

AR
f
: in

t →
int,
g
: in

t →
int,
x
: in

t `
x
: in

t

ok

f
: in

t →
int,
g
: in

t →
int,
x
: in

t `
f
x
: in

t

f
: in

t →
int,
g
: in

t →
int,
x
: in

t `
g
(f
x
) :

int

f
: in

t →
int,
g
: in

t →
int `

λ
x
: in

t.
g
(f
x
) :

int →
int

f
: in

t →
int `

λ
g
: in

t →
int.
λ
x
: in

t.
g
(f
x
) :

(in
t →

int)
→

int

`
(λ
f
: in

t →
int.
λ
g
: in

t →
int.
λ
x
: in

t.
g
(f
x
))

: (
int →

int)
→

int

4 Type soundness

(a) Recall the substitution lemma that we used in the proof of type soundness.

Lemma (Substitution). If x :τ ′ ` e :τ and ` v :τ ′ then ` e{v/x} :τ .

Using the definition of substitution given in Assignment 2, prove this lemma. You may assume that v
does not have any free variables (i.e., FV (v) = ∅).
Remember to state what set you are performing induction on and what the property is that you are
proving for every element in that set. If you are not sure what cases you need to consider, or what
you are able to assume in each case of the inductive proof, we strongly suggest that you write down
the inductive reasoning principle for the inductively defined set.

Page 6 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

Answer: We recall the definition of substitution, since we will use it in this proof.

y{e/x} =

{
e if x = y

y if x 6= y

(e1 e2){e/x} = e1{e/x} e2{e/x}

(λy. e′){e/x} =


λy. e′ if x = y

λy. (e′{e/x}) if x 6= y and y 6∈ FV (e)

λz. ((e′{z/y}){e/x}) if x 6= y and y ∈ FV (e), where
z 6∈ FV (e) ∪ FV (e′) ∪ {x}

We extend substitution for the new syntactic forms in our language.

n{e/x} = n

(){e/x} = ()

e1 + e2{e/x} = (e1{e/x}) + (e2{e/x})

We proceed by structural induction on expressions. That is, we will perform induction on the set of expressions.
As an aside, the inductive reasoning principle for the set of expressions for this language is the following:

For any property P ,
If

• P (n) holds
• P (()) holds
• P (x) holds
• For all expressions e, if P (e) holds then P (λx :τ. e) holds
• For all expressions e1 and e2, if P (e1) and P (e2) holds then P (e1 e2) holds
• For all expressions e1 and e2, if P (e1) and P (e2) holds then P (e1 + e2) holds

then

for all expressions e, P (e) holds.

The property we will prove is actually stronger than the lemma. We will need this stronger property in order to
deal with the case for functions. The property is:

P (e) = ∀Γ, x, τ, v, τ ′. if Γ[x 7→ τ ′] ` e :τ and ` v :τ ′ then Γ ` e{v/x} :τ

We consider the possible cases (which correspond to the 6 bullet points in the inductive reasoning principle above).

• e = n

Assume that Γ[x 7→ τ ′] ` e :τ and ` v :τ ′.

Since e = n, we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

• e = ()

Assume that Γ[x 7→ τ ′] ` e :τ and ` v :τ ′.

Since e = (), we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

• e = y

Assume that Γ[x 7→ τ ′] ` e :τ and ` v :τ ′.

We consider two subcases, where x and y are the same variable, and where they are different variables.

Page 7 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

– x and y are the same variable.
In this case, we have τ = τ ′ (since e = x and Γ[x 7→ τ ′] ` e : τ means that, by inversion using rule
T-VAR, τ = τ ′). Also, we have e{v/x} = v. From ` v :τ ′ we can derive Γ ` v :τ ′, and so Γ ` e{v/x} :τ
holds.

– x and y are different variables.
In this case, we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

• e = λy :τy. e
′

Assume that Γ[x 7→ τ ′] ` e : τ and ` v : τ ′. Also assume that the property holds for e (i.e., the inductive
hypothesis).

We consider three subcases, corresponding to the three possible cases for substitution of λy :τy. e
′.

– x and y are the same variable.
In this case, we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

– x and y are different variables and y 6∈ FV (v).
In this case, we have e{v/x} = λy :τy. (e

′{v/x}).
By inversion on Γ[x 7→ τ ′] ` e :τ , we have Γ[x 7→ τ ′][y 7→ τy] ` e′ :τ ′′ for some τ ′′ where τ = τy → τ ′′.
Since x and y are different variables, note that Γ[x 7→ τ ′][y 7→ τy] is equal to Γ′[x 7→ τ ′] where Γ′ =
Γ[y 7→ τy]. Because the inductive hypothesis holds for expression e′, and Γ′[x 7→ τ ′] ` e′ : τ ′′, we have
Γ′ ` (e′{v/x}) :τ ′′.
Using typing rule T-ABS, we have that Γ ` λy :τy. (e

′{v/x}) :τy → τ ′′. That is, we have Γ ` e{v/x} :τ ,
as required.

– x and y are different variables and y ∈ FV (v).
This case is actually impossible. Since v is a value, v can not have any free variables.

• e = e1 e2

Assume that Γ[x 7→ τ ′] ` e : τ and ` v : τ ′. Also assume that the property holds for e1 and for e2 (i.e., the
inductive hypothesis).

From Γ[x 7→ τ ′] ` e : τ , by inversion, we have that Γ[x 7→ τ ′] ` e1 : τ ′′ → τ and Γ[x 7→ τ ′] ` e2 : τ ′′ for some
type τ ′′. (That is, rule T-APP is the only typing rule that has a conclusion that matches Γ[x 7→ τ ′] ` e :τ , and
so it must be the case that the premises of T-APP are true.)

From the inductive hypothesis, we have that Γ[x 7→ τ ′] ` e1{v/x} :τ ′′ → τ and Γ[x 7→ τ ′] ` e2{v/x} :τ ′′.

From the definition of substitution, we have that e{v/x} = (e1{v/x}) (e2{v/x}).

Thus, using the typing rule T-APP, we have that Γ ` e{v/x} :τ , as required.

• e = e1 + e2

Assume that Γ[x 7→ τ ′] ` e : τ and ` v : τ ′. Also assume that the property holds for e1 and for e2 (i.e., the
inductive hypothesis).

From Γ[x 7→ τ ′] ` e :τ , by inversion, we have that Γ[x 7→ τ ′] ` e1 : int and Γ[x 7→ τ ′] ` e2 : int, and τ = int.
(That is, rule T-ADD is the only typing rule that has a conclusion that matches Γ[x 7→ τ ′] ` e : τ , and so it
must be the case that the premises of T-ADD are true.)

From the inductive hypothesis, we have that Γ[x 7→ τ ′] ` e1{v/x} : int and Γ[x 7→ τ ′] ` e2{v/x} : int.

From the definition of substitution, we have that e{v/x} = (e1{v/x}) + (e2{v/x}).

Thus, using the typing rule T-ADD, we have that Γ ` e{v/x} :τ , as required.

(b) Recall the context lemma that we used in the proof of type soundness.

Page 8 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

Lemma (Context). If ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′ then ` E[e1] :τ .

Prove this lemma.
Remember to state what set you are performing induction on and what the property is that you are
proving for every element in that set. If you are not sure what cases you need to consider, or what
you are able to assume in each case of the inductive proof, we strongly suggest that you write down
the inductive reasoning principle for the inductively defined set.

Answer: We proceed by structural induction on contexts E. That is, we are doing induction on the set of contexts,
which is inductively defined by the grammar:

E ::= [·] | E e | v E | E + e | v + E

As an aside, the inductive reasoning principle for the set of contexts is the following:

For any property P ,
If

• P ([·]) holds

• For all contexts E, if P (E) holds then P (E e) holds

• For all contexts E, if P (E) holds then P (v E) holds

• For all contexts E, if P (E) holds then P (E + e) holds

• For all contexts E, if P (E) holds then P (v + E) holds

then

for all contexts E, P (E) holds.

So, the property we are proving is:

P (E) = ∀e0, e1, τ, τ ′. if ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′ then ` E[e1] :τ

We consider the possible cases (which correspond to the 5 bullet points in the inductive reasoning principle above).

• E = [·].
Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′.

Since E[e0] = e0, we have τ = τ ′.

Moreover, since E[e1] = e1, from ` e1 :τ ′ we have ` E[e1] :τ as required.

• E = E′ e.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` E′[e0] e : τ , by inversion (i.e., rule T-APP is the only rule whose conclusion is an application expres-
sion), we must have that ` E′[e0] :τ ′′ → τ for some type τ ′′ and ` e :τ ′′.

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type τ ′′ → τ . Using the
typing rule T-APP, we can conclude that ` E′[e1] e :τ . That is, ` E[e1] :τ as required.

• E = v E′.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` v E′[e0] : τ , by inversion (i.e., rule T-APP is the only rule whose conclusion is an application expres-
sion), we must have that ` E′[e0] :τ ′′ for some type τ ′′, and ` v :τ ′′ → τ .

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type τ ′′. Using the typing
rule T-APP, we can conclude that ` v E′[e1] :τ . That is, ` E[e1] :τ as required.

Page 9 of 10

References and continuations; Simply-typed lambda calculus; Type soundness (Lectures 10-11)
Section and Practice Problems

• E = E′ + e.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` E′[e0]+e :τ , by inversion (i.e., rule T-ADD is the only rule whose conclusion is an addition expression),
we must have that ` E′[e0] : int and ` e : int, and that τ = int.

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type int. Using the typing
rule T-ADD, we can conclude that ` E′[e1] + e :τ . That is, ` E[e1] :τ as required.

• E = v + E′.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` v+E′[e0] :τ , by inversion (i.e., rule T-ADD is the only rule whose conclusion is an addition expression),
we must have that ` E′[e0] : int and ` v : int, and that τ = int.

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type int. Using the typing
rule T-ADD, we can conclude that ` v + E′[e1] :τ . That is, ` E[e1] :τ as required.

Since all these cases go though, using the inductive reasoning principle, we can conclude that the property holds
for all contexts. That is exactly the lemma we were trying to prove.

Page 10 of 10

