Harvard School of Engineering and Applied Sciences - CS 152: Programming Languages

 Type Inference; Parametric Polymorphism; Records and Subtyping

 Type Inference; Parametric Polymorphism; Records and Subtyping Section and Practice Problems

Mar 20-23, 2018

1 Type Inference

(a) Recall the constraint-based typing judgment $\Gamma \vdash e: \tau \triangleright C$. Give inference rules for products and sums. That is, for the following expressions.

- $\left(e_{1}, e_{2}\right)$
- \#1e
- \#2 e
- inl $_{\tau_{1}+\tau_{2}} e$
- $\operatorname{inr}_{\tau_{1}+\tau_{2}} e$
- case e_{1} of $e_{2} \mid e_{3}$

Answer:

Note that in all of the rules below except for the rule for pairs $\left(e_{1}, e_{2}\right)$, the types in the premise and conclusion are connected only through constraints. The reason for this is the same as in the typing rule for function application, and for addition: we may not be able to derive that the premise has the appropriate type, e.g., for a projection $\# 1 e$, we may not be able to derive that $\Gamma \vdash e: \tau_{1} \times \tau_{2} \triangleright C$. We instead use constraints to ensure that the derived type is appropriate.

$$
\begin{aligned}
& \frac{\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \quad \Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} \times \tau_{2} \triangleright C_{1} \cup C_{2}} \\
& \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \# 1 e: X \triangleright C \cup\{\tau \equiv X \times Y\}} X, Y \text { are fresh } \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \# 2 e: Y \triangleright C \cup\{\tau \equiv X \times Y\}} X, Y \text { are fresh } \\
& \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash i n I_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \triangleright C \cup\left\{\tau \equiv \tau_{1}\right\}} \\
& \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \operatorname{inr}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \triangleright C \cup\left\{\tau \equiv \tau_{2}\right\}} \\
& \frac{\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \quad \Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2} \quad \Gamma \vdash e_{3}: \tau_{3} \triangleright C_{3}}{\Gamma \vdash \text { case } e_{1} \text { of } e_{2} \mid e_{3}: Z \triangleright C_{1} \cup C_{2} \cup C_{3} \cup\left\{\tau_{1} \equiv X+Y, \tau_{2} \equiv X \rightarrow Z, \tau_{3} \equiv Y \rightarrow Z\right\}} X, Y, Z \text { are fresh }
\end{aligned}
$$

(b) Determine a set of constraints C and type τ such that

$$
\vdash \lambda x: A \cdot \lambda y: B \cdot(\# 1 y)+(x(\# 2 y))+(x 2): \tau \triangleright C
$$

and give the derivation for it.

Answer:

$$
\begin{aligned}
C & =\{B \equiv X \times Y, X \equiv \mathbf{i n t}, B \equiv Z \times W, A \equiv W \rightarrow U, U \equiv \mathbf{i n t}, A \equiv \mathbf{i n t} \rightarrow V, V \equiv \boldsymbol{i n t}\} \\
\tau & \equiv A \rightarrow B \rightarrow \mathbf{i n t}
\end{aligned}
$$

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset a really really big derivation).
The expression $\# 1 y$ requires u s to add a constraint that the type of y (i.e., B) is equal to a product type for some fresh variables X and Y, thus constraint $B \equiv X \times Y$. (And expression $\# 1 y$ has type X.)

The expression ($\# 2 y$) similarly requires us to add a constraint that the type of y (i.e., B) is equal to a product type for some fresh variables Z and W, thus constraint $B \equiv Z \times W$. (And expression $\# 2 y$ has type W.)
The expression $x(\# 2 y)$ requires us to add a constraint that unifies the type of x (i.e., A) with a function type $W \rightarrow U$ (where W is the type of $\# 2 y$ and U is a fresh type variable).
The expression $x 2$ requires u s to add a constraint that unifies the type of x (i.e., A) with a function type int $\rightarrow V$ (where int is the type of expression 2 and V is a fresh type).
The addition operations leads us to add constraints $X \equiv \boldsymbol{i n t}, U \equiv \boldsymbol{i n t}$, and $V \equiv \boldsymbol{i n t}$ (i.e., the types of expressions (\#1 y), $(x(\# 2 y))$ and ($x 2$) must all unify with int.
(c) Recall the unification algorithm from Lecture 14. What is the result of unify (C) for the set of constraints C from Question 1(b) above?

Answer: The result is a substitution equivalent to

$$
[A \mapsto \mathbf{i n t} \rightarrow \mathbf{i n t}, B \mapsto \mathbf{i n t} \times \text { int }, X \mapsto \mathbf{i n t}, Y \mapsto \mathbf{i n t}, Z \mapsto \mathbf{i n t}, W \mapsto \text { int }, U \mapsto \mathbf{i n t}, V \mapsto \mathbf{i n t}]
$$

2 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing rules.)

- $\Lambda A . \lambda x: A \rightarrow$ int. 42
- $\lambda y: \forall X . X \rightarrow X .(y[$ int $]) 17$
- $\Lambda Y . \Lambda Z . \lambda f: Y \rightarrow Z . \lambda a: Y . f a$
- $\Lambda A . \Lambda B . \Lambda C . \lambda f: A \rightarrow B \rightarrow C . \lambda b: B . \lambda a: A$. $f a b$

Answer:

- $\Lambda A . \lambda x: A \rightarrow$ int. 42 has type

$$
\forall A .(A \rightarrow \text { int }) \rightarrow \text { int }
$$

- $\lambda y: \forall X . X \rightarrow X .(y[i n t]) 17$ has type

$$
(\forall X . X \rightarrow X) \rightarrow \text { int }
$$

- $\Lambda Y . \Lambda Z . \lambda f: Y \rightarrow Z . \lambda a: Y . f$ a has type

$$
\forall Y . \forall Z .(Y \rightarrow Z) \rightarrow Y \rightarrow Z
$$

- $\Lambda A . \Lambda B . \Lambda C . \lambda f: A \rightarrow B \rightarrow C . \lambda b: B . \lambda a: A . f$ a b has type

$$
\forall A . \forall B . \forall C .(A \rightarrow B \rightarrow C) \rightarrow B \rightarrow A \rightarrow C
$$

(b) For each of the following types, write an expression with that type.

- $\forall X . X \rightarrow(X \rightarrow X)$
- $(\forall C . \forall D . C \rightarrow D) \rightarrow(\forall E$. int $\rightarrow E)$
- $\forall X . X \rightarrow(\forall Y . Y \rightarrow X)$

Answer:

- $\forall X . X \rightarrow(X \rightarrow X)$ is the type of

$$
\Lambda X . \lambda x: X . \lambda y: X . y
$$

- $(\forall C . \forall D . C \rightarrow D) \rightarrow(\forall E$. int $\rightarrow E)$ is the type of

$$
\lambda f: \forall C . \forall D . C \rightarrow D . \Lambda E . \lambda x: \text { int. }(f[\text { int }][E]) x
$$

- $\forall X . X \rightarrow(\forall Y . Y \rightarrow X)$ is the type of

$$
\Lambda X . \lambda x: X . \Lambda Y . \lambda y: Y . x
$$

3 Records and Subtyping

(a) Assume that we have a language with references and records.
(i) Write an expression with type

$$
\{\text { cell }: \text { int ref, inc }: \text { unit } \rightarrow \text { int }\}
$$

such that invoking the function in the field inc will increment the contents of the reference in the field cell.

Answer: The following expression has the appropriate type.

$$
\begin{aligned}
& \text { let } x=\text { ref } 14 \text { in } \\
& \{\text { cell }=x, \text { inc }=\lambda u: \text { unit. } x:=(!x+1)\}
\end{aligned}
$$

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an expression that increments the contents of the cell twice.

Answer:

$$
\text { let } z=y \cdot \operatorname{inc}() \text { in } y \cdot \operatorname{inc}()
$$

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will need to use the subsumption rule.)

$$
(\lambda x:\{\operatorname{dog} s: \text { int }, \text { cats }: \text { int }\} . x \cdot \operatorname{dog} s+x . c a t s)\{\operatorname{dogs}=2, \text { cats }=7, \text { mice }=19\}
$$

Answer:

For brevity, let $e_{1} \equiv \lambda x:\{\operatorname{dogs}:$ int, cats $\left.: \operatorname{int}\} . x . d o g s+x . c a t s\right)$ and let $e_{2} \equiv\{\operatorname{dogs}=2$, cats $=7$, mice $=19\}$. The derivation has the following form.

The derivation of e_{1} is straight forward:

Type Inference; Parametric Polymorphism; Records and Subtyping Section and Practice Problems

The derivation of e_{2} requires the use of subsumption, since we need to show that $e_{2} \equiv\{$ dogs $=2$, cats $=$ 7 , mice $=19\}$ has type $\{$ dogs $:$ int, cats $:$ int $\}$.

