
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

Mar 20-23, 2018

1 Type Inference

(a) Recall the constraint-based typing judgment Γ ` e :τ .C. Give inference rules for products and sums.
That is, for the following expressions.

• (e1, e2)

• #1 e

• #2 e

• inlτ1+τ2 e

• inrτ1+τ2 e

• case e1 of e2 | e3

Answer:

Note that in all of the rules below except for the rule for pairs (e1, e2), the types in the premise and conclusion are
connected only through constraints. The reason for this is the same as in the typing rule for function application,
and for addition: we may not be able to derive that the premise has the appropriate type, e.g., for a projection
#1 e, we may not be able to derive that Γ ` e :τ1× τ2 .C. We instead use constraints to ensure that the derived
type is appropriate.

Γ ` e1 :τ1 . C1 Γ ` e2 :τ2 . C2

Γ ` (e1, e2) :τ1 × τ2 . C1 ∪ C2

Γ ` e :τ . C

Γ ` #1 e :X . C ∪ {τ ≡ X × Y }
X,Y are fresh

Γ ` e :τ . C

Γ ` #2 e :Y . C ∪ {τ ≡ X × Y }
X,Y are fresh

Γ ` e :τ . C

Γ ` inlτ1+τ2 e :τ1 + τ2 . C ∪ {τ ≡ τ1}
Γ ` e :τ . C

Γ ` inrτ1+τ2 e :τ1 + τ2 . C ∪ {τ ≡ τ2}

Γ ` e1 :τ1 . C1 Γ ` e2 :τ2 . C2 Γ ` e3 :τ3 . C3

Γ ` case e1 of e2 | e3 :Z . C1 ∪ C2 ∪ C3 ∪ {τ1 ≡ X + Y, τ2 ≡ X → Z, τ3 ≡ Y → Z}
X,Y, Z are fresh

(b) Determine a set of constraints C and type τ such that

` λx :A. λy :B. (#1 y) + (x (#2 y)) + (x 2) :τ . C

and give the derivation for it.



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

Answer:

C = {B ≡ X × Y , X ≡ int , B ≡ Z ×W , A ≡W → U , U ≡ int , A ≡ int→ V , V ≡ int}
τ ≡ A→ B → int

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset
a really really big derivation).

The expression #1 y requires us to add a constraint that the type of y (i.e., B) is equal to a product type for
some fresh variables X and Y , thus constraint B ≡ X × Y . (And expression #1 y has type X .)

The expression (#2 y) similarly requires us to add a constraint that the type of y (i.e., B) is equal to a product
type for some fresh variables Z and W , thus constraint B ≡ Z ×W . (And expression #2 y has type W .)

The expression x (#2 y) requires us to add a constraint that unifies the type of x (i.e., A) with a function type
W → U (where W is the type of #2 y and U is a fresh type variable).

The expression x 2 requires us to add a constraint that unifies the type of x (i.e.,A) with a function type int→ V
(where int is the type of expression 2 and V is a fresh type).

The addition operations leads us to add constraintsX ≡ int, U ≡ int, and V ≡ int (i.e., the types of expressions
(#1 y), (x (#2 y)) and (x 2) must all unify with int.

(c) Recall the unification algorithm from Lecture 14. What is the result of unify(C) for the set of con-
straints C from Question 1(b) above?

Answer: The result is a substitution equivalent to

[A 7→ int→ int , B 7→ int× int , X 7→ int , Y 7→ int , Z 7→ int , W 7→ int , U 7→ int , V 7→ int]

2 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does
it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing
rules.)

• ΛA. λx :A→ int. 42

• λy :∀X. X → X. (y [int]) 17

• ΛY.ΛZ. λf :Y → Z. λa :Y. f a

• ΛA.ΛB.ΛC. λf :A→ B → C. λb :B. λa :A. f a b

Answer:

• ΛA. λx :A→ int. 42 has type
∀A. (A→ int)→ int

• λy :∀X. X → X. (y [int]) 17 has type

(∀X. X → X)→ int

Page 2 of 5



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

• ΛY.ΛZ. λf :Y → Z. λa :Y. f a has type

∀Y. ∀Z. (Y → Z)→ Y → Z

• ΛA.ΛB.ΛC. λf :A→ B → C. λb :B. λa :A. f a b has type

∀A. ∀B. ∀C. (A→ B → C)→ B → A→ C

(b) For each of the following types, write an expression with that type.

• ∀X. X → (X → X)

• (∀C. ∀D. C → D)→ (∀E. int→ E)

• ∀X. X → (∀Y. Y → X)

Answer:

• ∀X. X → (X → X) is the type of
ΛX. λx :X.λy :X. y

• (∀C. ∀D. C → D)→ (∀E. int→ E) is the type of

λf :∀C. ∀D. C → D.ΛE. λx : int. (f [int] [E]) x

• ∀X. X → (∀Y. Y → X) is the type of

ΛX. λx :X.ΛY. λy :Y. x

3 Records and Subtyping

(a) Assume that we have a language with references and records.

(i) Write an expression with type

{ cell : int ref, inc : unit→ int }

such that invoking the function in the field inc will increment the contents of the reference in the
field cell.

Answer: The following expression has the appropriate type.

let x = ref 14 in
{ cell = x, inc = λu :unit. x := (!x+ 1) }

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an
expression that increments the contents of the cell twice.

Answer:
let z = y.inc () in y.inc ()

Page 3 of 5



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will
need to use the subsumption rule.)

(λx :{dogs : int, cats : int}. x.dogs + x.cats) {dogs = 2, cats = 7,mice = 19}

Answer:
For brevity, let e1 ≡ λx :{dogs : int, cats : int}. x.dogs+x.cats) and let e2 ≡ {dogs = 2, cats = 7,mice = 19}.
The derivation has the following form.

T-APP

...1
` e1 :{dogs : int, cats : int} → int

...2
` e2 :{dogs : int, cats : int}

` e1 e2 : int

The derivation of e1 is straight forward:

T-A
BS

T-A
DD

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}
`
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}
`
x.

do
gs
: in

t

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}
`
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}
`
x.

cat
s :

int

x
:{

do
gs
: i

nt, c
ats

: i
nt}
`
x.

do
gs
+
x.

cat
s :

int

`
e1
:{

do
gs
: i

nt, c
ats

: i
nt}
→

int

Page 4 of 5



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

The derivation of e2 requires the use of subsumption, since we need to show that e2 ≡ {dogs = 2, cats =
7,mice = 19} has type {dogs : int, cats : int}.

` 2: int ` 7: int ` 19: int

` {dogs = 2, cats = 7,mice = 19} :{dogs : int, cats : int,mice : int} {dogs : int, cats : int,mice : int} ≤ {dogs : int, cats : int}
` {dogs = 2, cats = 7,mice = 19} :{dogs : int, cats : int}

Page 5 of 5


