
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Curry-Howard isomorphism; Existential types; Sub-structural type systems
Section and Practice Problems

Mar 27-Mar 30, 2018

1 Curry-Howard isomorphism

The following logical formulas are tautologies, i.e., they are true. For each tautology, state the corresponding
type, and come up with a term that has the corresponding type.

For example, for the logical formula ∀φ.φ =⇒ φ, the corresponding type is ∀X. X → X , and a term
with that type is ΛX. λx :X.x. Another example: for the logical formula τ1 ∧ τ2 =⇒ τ1, the corresponding
type is τ1 × τ2 → τ1, and a term with that type is λx :τ1 × τ2.#1 x.

You may assume that the lambda calculus you are using for terms includes integers, functions, products,
sums, universal types and existential types.

(a) ∀φ. ∀ψ. φ ∧ ψ =⇒ ψ ∨ φ

Answer: The corresponding type is

∀X. ∀Y. X × Y → Y +X

A term with this type is
ΛX. ΛY. λx :X × Y. inlY+X #2 x

(b) ∀φ. ∀ψ. ∀χ. (φ ∧ ψ =⇒ χ) =⇒ (φ =⇒ (ψ =⇒ χ))

Answer: The corresponding type is

∀X. ∀Y. ∀Z. (X × Y → Z)→ (X → (Y → Z))

A term with this type is

ΛX. ΛY. ΛZ.λf :X × Y → Z. λx :X.λy :Y. f (x, y)

Note that this term uncurries the function. It is the opposite of the currying we saw in class.

(c) ∃φ. ∀ψ. ψ =⇒ φ

Answer: The corresponding type is
∃X. ∀Y. Y → X

A term with this type is
pack {int,ΛY. λy :Y. 42} as ∃X. ∀Y. Y → X

(d) ∀ψ. ψ =⇒ (∀φ. φ =⇒ ψ)



Curry-Howard isomorphism; Existential types; Sub-structural type systems
Section and Practice Problems

Answer: The corresponding type is
∀Y. Y → (∀X. X → Y )

A term with this type is
ΛY. λa :Y.ΛX. λx :X. a

Primitive propositions in logic correspond

(e) ∀ψ. (∀φ. φ =⇒ ψ) =⇒ ψ

Answer: A corresponding type is
∀Y. (∀X. X → Y )→ Y

A term with this type is
ΛY. λf :∀X. X → Y. f [int] 42

2 Existential types

(a) Write a term with type ∃C. { produce : int → C, consume : C → bool }. Moreover, ensure that calling
the function produce will produce a value of type C such that passing the value as an argument to
consume will return true if and only if the argument to produce was 42. (Assume that you have an
integer comparison operator in the language.)

Answer:

In the following solution, we use int as the witness type, and implement produce using the identity function,
and implement consume by testing whether the value of type C (i.e., of witness type int) is equal to 42.

pack {int, { produce = λa : int. a, consume = λa : int. a = 42 }}
as ∃C. { produce : int→ C, consume : C → bool }

(b) Do the same as in part (a) above, but now use a different witness type.

Answer: Here’s another solution where instead we use bool as the witness type, and implement produce by
comparing the integer argument to 42, and implement consume as the identity function.

pack {bool, { produce = λa : int. a = 42, consume = λa :bool. a }}
as ∃C. { produce : int→ C, consume : C → bool }

(c) Assuming you have a value v of type ∃C. { produce : int → C, consume : C → bool }, use v to
“produce” and “consume” a value (i.e., make sure you know how to use the unpack {X,x} = e1 in e2
expression.

Answer: unpack {D, r} = v in
let d = r.produce 19 in
r.consume d

Page 2 of 4



Curry-Howard isomorphism; Existential types; Sub-structural type systems
Section and Practice Problems

3 Sub-structural type systems

Recall the linear lambda calculus from Lecture 17.

(a) Suppose we extended the language with a negation operation not e. Intuitively, e needs to have
boolean type, and the expression evaluates e to a value v and then evaluates to the negation of the
boolean represented by v. The result of the negation is unrestricted (i.e., it is not linear). Write a typing
rule for the negation operator.

Answer:

Γ ` e :q bool

Γ ` not e :un bool

Note that the expression e can be either linear or unrestricted.

(b) Suppose we extended the language with a conjunction operator, e1 and e2. Intuitively, e1 and e2 both
need to have boolean type, and the expression evaluates to the conjunction of the booleans. The
boolean value that is the result of the conjunction is unrestricted (i.e., it is not linear). Write a typing
rule for the conjunction operator.

Answer:

Γ1 ` e1 :q bool Γ2 ` e2 :q′ bool

Γ ` e1 and e2 :un bool
Γ = Γ1 ◦ Γ2

Note that the sub expressions can be either linear or unrestricted, and they do not need to be the same. Note that
we need to split the context Γ so that linear variables in Γ are appropriately split between the computation of
the subexpressions.

(c) Let context Γ = x : lin (lin bool× un bool) and expression e ≡ splitxas y, z in if y then z else not z.

Is e well-typed for context Γ? That is, does Γ ` e :un bool hold? If so, give the derivation.

Answer: Yes, it is well typed. The linear data structure (i.e., the pair) contains an unrestricted value, but
that is fine. It is the reverse that is a problem, i.e., when an unrestricted data structure contains a linear value.
(Apologies for the tiny font. Zoom in on a PDF viewer to see the details of the derivation.)

T-SPLIT

T-VAR
Γ ` x : lin (lin bool × un bool)

T-IF

T-VAR
y : lin bool, z :un bool ` y : lin bool

T-VAR
z :un bool ` z :un bool

T-NOT

T-VAR
z :un bool ` z :un bool

z :un bool ` not z :un bool

y : lin bool, z :un bool ` if y then z else not z :un bool

Γ ` e :un bool

Note how the context y : lin bool, z : un bool is split into y : lin bool, z : un bool (which is used to type check
the the conditional expression y) and the context z : un bool (which is used to check the two branches). The
linear resource y : lin bool goes into only one of the contexts, whereas the unrestricted resource z :un bool goes
into both.

(d) Consider the execution of the following (well-typed) expression, starting from the empty store. What
does the final store look like? (In particular, recall that locations containing linear values are removed
once the linear value is used.)

(lin λx : lin (un bool× un bool). splitxas y, z in y) (lin (un false,un true))

Page 3 of 4



Curry-Howard isomorphism; Existential types; Sub-structural type systems
Section and Practice Problems

Answer: As the program executes, it creates locations for each value. Let’s suppose that these are the locations
created for each value:

`1 7→ lin λx : lin (un bool× un bool). splitxas y, z in y
`2 7→ un false
`3 7→ un true
`4 7→ lin (`2, `3)

As each linear value is used, it is removed from the store. The type system ensures that every linear value is
used exactly once, and thus, every linear value is removed from the store by the end of the execution. Thus, the
store at the end of execution contains only locations `2 and `3, the locations that contain unrestricted values.

Page 4 of 4


