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1 Curry-Howard isomorphism

The following logical formulas are tautologies, i.e., they are true. For each tautology, state the corresponding
type, and come up with a term that has the corresponding type.

For example, for the logical formula ∀φ.φ =⇒ φ, the corresponding type is ∀X. X → X , and a term
with that type is ΛX. λx :X.x. Another example: for the logical formula τ1 ∧ τ2 =⇒ τ1, the corresponding
type is τ1 × τ2 → τ1, and a term with that type is λx :τ1 × τ2.#1 x.

You may assume that the lambda calculus you are using for terms includes integers, functions, products,
sums, universal types and existential types.

(a) ∀φ. ∀ψ. φ ∧ ψ =⇒ ψ ∨ φ

(b) ∀φ. ∀ψ. ∀χ. (φ ∧ ψ =⇒ χ) =⇒ (φ =⇒ (ψ =⇒ χ))

(c) ∃φ. ∀ψ. ψ =⇒ φ

(d) ∀ψ. ψ =⇒ (∀φ. φ =⇒ ψ)

(e) ∀ψ. (∀φ. φ =⇒ ψ) =⇒ ψ

2 Existential types

(a) Write a term with type ∃C. { produce : int → C, consume : C → bool }. Moreover, ensure that calling
the function produce will produce a value of type C such that passing the value as an argument to
consume will return true if and only if the argument to produce was 42. (Assume that you have an
integer comparison operator in the language.)

(b) Do the same as in part (a) above, but now use a different witness type.

(c) Assuming you have a value v of type ∃C. { produce : int → C, consume : C → bool }, use v to
“produce” and “consume” a value (i.e., make sure you know how to use the unpack {X,x} = e1 in e2
expression.

3 Sub-structural type systems

Recall the linear lambda calculus from Lecture 17.

(a) Suppose we extended the language with a negation operation not e. Intuitively, e needs to have
boolean type, and the expression evaluates e to a value v and then evaluates to the negation of the
boolean represented by v. The result of the negation is unrestricted (i.e., it is not linear). Write a typing
rule for the negation operator.

(b) Suppose we extended the language with a conjunction operator, e1 and e2. Intuitively, e1 and e2 both
need to have boolean type, and the expression evaluates to the conjunction of the booleans. The
boolean value that is the result of the conjunction is unrestricted (i.e., it is not linear). Write a typing
rule for the conjunction operator.
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(c) Let context Γ = x : lin (lin bool× un bool) and expression e ≡ splitxas y, z in if y then z else not z.

Is e well-typed for context Γ? That is, does Γ ` e :un bool hold? If so, give the derivation.

(d) Consider the execution of the following (well-typed) expression, starting from the empty store. What
does the final store look like? (In particular, recall that locations containing linear values are removed
once the linear value is used.)

(lin λx : lin (un bool× un bool). splitxas y, z in y) (lin (un false,un true))
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