
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Algebraic structures; Axiomatic semantics
Section and Practice Problems

Apr 3–6, 2018

1 Haskell

(a) Install the Haskell Platform, via https://www.haskell.org/platform/.

(b) Get familiar with Haskell. Take a look at http://www.seas.harvard.edu/courses/cs152/
2018sp/resources.html for some links to tutorials.

In particular, get comfortable doing functional programming in Haskell. Write the factorial function.
Write the append function for lists.

(c) Get comfortable using monads, and the bind syntax. Try doing the exercises at https://wiki.
haskell.org/All_About_Monads#Exercises (which will require you to read the previous sec-
tions to understand do notation, and their previous examples).

(d) Also, look at the file http://www.seas.harvard.edu/courses/cs152/2018sp/sections/
haskell-examples.hs, which includes some example Haskell code (that will likely be covered in
Section).

2 Algebraic structures

(a) Show that the option type, with map defined as in the lecture notes (Lecture 18, Section 2.2) satisfy the
functor laws.

Answer: The functor laws are:

∀f ∈ A→ B, g ∈ B → C. (map f) # (map g) = map (f # g) Distributivity
map (λa :A. a) = (λa :TA. a) Identity

The definition of map for the option type is

map ≡ λf :τ1 → τ2. λa :τ1 option. case a of λx :unit.none|λv :τ1. some (f v)

To show distributivity, we need to show that for all functions f : τ1 → τ2 and g : τ2 → τ3 we have that
λx :τ1 option. (map g) ((map f) x) is equivalent to map (λx :τ1. g (f x))

Recall that # indicates function composition. So the function f # g can can be expressed as λx : τ1. g (f x), and
the function (map f) # (map g) can be expressed as λx :τ1 option. (map g) ((map f) x).

https://www.haskell.org/platform/
http://www.seas.harvard.edu/courses/cs152/2018sp/resources.html
http://www.seas.harvard.edu/courses/cs152/2018sp/resources.html
https://wiki.haskell.org/All_About_Monads#Exercises
https://wiki.haskell.org/All_About_Monads#Exercises
http://www.seas.harvard.edu/courses/cs152/2018sp/sections/haskell-examples.hs
http://www.seas.harvard.edu/courses/cs152/2018sp/sections/haskell-examples.hs

Algebraic structures; Axiomatic semantics
Section and Practice Problems

λx :τ1 option. (map g) ((map f) x)
= λx :τ1 option. (map g) ((λa :τ1 option. case a of λy :unit.none|λv :τ1. some (f v)) x) expand map f
= λx :τ1 option. (map g) (case x of λy :unit.none|λv :τ1. some (f v)) by β-equivalence
= λx :τ1 option. (λb :τ2 option. case b of λz :unit.none|λw :τ2. some (g w))

(case x of λy :unit.none|λv :τ1. some (f v)) expand map g
= λx :τ1 option. let b = case x of λy :unit.none|λv :τ1. some (f v) in

case b of λz :unit.none|λw :τ2. some (g w) rewrite as let expression
= λx :τ1 option. case x of λy :unit.none|λv :τ1. some (g (f v)) simplifying nested cases
= λx :τ1 option. case x of λt :unit.none|λv :τ1. some ((λy :τ1. g (f y)) v)

= map (λy :τ1. g (f y)) un-expanding map (λy :τ1. g (f y))

To show identity, we need to show that map λa :τ. a is equivalent to λa :τ option. a.

map λa :τ. a
= λb :τ option. case b of λx :unit.none|λv :τ. some ((λa :τ. a) v) expand map (λa :τ. a)

= λb :τ option. case b of λx :unit.none|λv :τ. some v by β-equivalence
= λb :τ option. b

(b) Consider the list type, τ list. Define functions return and bind for the list monad that satisfy the monad
laws. Check that they satisfy the monad laws.

Answer: We define return and bind so that they represent a set of possible values that could be produced by a
computation. That is, we use lists to represent the possible values of a nondeterministic computation. There are
other ways to define return and bind on lists, for example, as a stream of results produced by a computation.

Here return will take a value of type τ and return a list that contains the value as its only element. bind will
take a list of τ , take a function f from τ to lists of τ ′, and apply f to every element of the list (using the function
map, defined in class), to get a list of lists of τ ′. We then use a utility function flatten to flatten the list of lists
of τ ′ to a list of τ ′. (In the definition of flatten, a acts as an accumulator.)

return , λx :τ. x :: []

bind , λxs :τ list. λf :τ → τ ′ list. flatten (map f xs)

flatten , let fl = µf :τ ′ list→ (τ ′ list) list→ τ ′ list.
λa :τ ′ list. λx : (τ ′ list) list. if isempty? x then a else f (append a (head x)) (tail x) in

fl []

3 Axiomatic semantics

(a) Consider the program

c ≡ bar := foo;while foo > 0 do (bar := bar + 1; foo := foo− 1).

Write a Hoare triple {P} c {Q} that expresses that the final value of bar is two times the initial value
of foo.

Page 2 of 6

Algebraic structures; Axiomatic semantics
Section and Practice Problems

Answer:

{v = foo} bar := foo;while foo > 0 do (bar := bar + 1; foo := foo− 1) {bar = 2× v}

Note that v is a logical variable, and we are using it to provide a name for the initial value of foo. Note also
that the Hoare triple could have said more things about the program. For example, the post condition could have
included that foo is equal to zero.

(b) Prove the following Hoare triples. That is, using the inference rules from Section 1.3 of Lecture 19,
find proof tree with the appropriate conclusions.

(i) ` {baz = 25} baz := baz+ 17 {baz = 42}

Answer:

CONS
� baz = 25⇒ baz+ 17 = 42

ASG.
` {baz+ 17 = 42} baz := baz+ 17 {baz = 42}

` {baz = 25} baz := baz+ 17 {baz = 42}

(ii) ` {true} baz := 22; quux := 20 {baz+ quux = 42}

Answer:

CONSQ.
� true⇒ 22 + 20 = 42

SEQ.

ASG.
{22 + 20 = 42} baz := 22 {baz + 20 = 42}

ASG.
{baz + 20 = 42} quux := 20 {baz + quux = 42}

{22 + 17 = 42} baz := 22; quux := 20 {baz + quux = 42}
{true} baz := 22; quux := 20 {baz + quux = 42}

(iii) ` {baz+ quux = 42} baz := baz− 5; quux := quux+ 5 {baz+ quux = 42}

Answer: Let c ≡ baz := baz− 5; quux := quux+ 5.

CONSQ.
� baz + quux = 42⇒ baz− 5 + quux + 5 = 42

...

` {baz− 5 + quux + 5 = 42} c {baz + quux = 42}
` {baz + quux = 42} c {baz + quux = 42}

where the elided tree is

SEQ

ASG
{baz− 5 + quux + 5 = 42} baz := baz− 5 {baz + quux− 5 = 42}

ASG
{baz + quux− 5 = 42} quux := quux + 5 {baz + quux = 42}

` {baz− 5 + quux + 5 = 42} c {baz + quux = 42}

(iv) ` {true} if y = 0 then z := 2 else z := y × y {z > 0}

Answer:

CONS
� true ∧ y = 0⇒ 2 > 0

ASG
{2 > 0} z := 2 {z > 0} � z > 0⇒ z > 0

` {true ∧ y = 0} z := y × y {z > 0}

Page 3 of 6

Algebraic structures; Axiomatic semantics
Section and Practice Problems

Where here the assertion true ∧ y = 0⇒ 2 > 0 is always valid because � 2 > 0.

CONS
� true ∧ ¬(y = 0)⇒ y × y > 0

ASG
{y × y > 0} z := y × y {z > 0} � z > 0⇒ z > 0

` {true ∧ ¬(y = 0)} z := y × y {z > 0}

The assertion true∧¬(y = 0)⇒ y× y > 0 is valid because either � y× y > 0 or 6� true∧¬(y = 0). To
see this we can simplify 6� true ∧ ¬(y = 0) to 6� ¬(y = 0), and then to � y = 0. And it is always the case
that either � y = 0 or � y × y > 0.
Combining the two above trees, we can get

IF

CONS

...

` {true ∧ y = 0} z := 2 {z > 0}
CONS

...

` {true ∧ ¬(y = 0)} z := y × y {z > 0}
` {true} if y = 0 then z := 2 else z := y × y {z > 0}

(v) ` {true} y := 10; z := 0;while y > 0 do z := z+ y {z = 55}

Answer: This is a “trick” question in that the loop never terminates. (This wasn’t intentional; Prof
Chong made a mistake when writing the question. But luckily the Hoare triple is still valid!)
Let’s consider the while loop. So the loop invariant we will use is y > 0.

WHILE

...

` {y > 0 ∧ y > 0} z := z+ y {y > 0}
` {y > 0} while y > 0 do z := z+ y {y > 0 ∧ y ≤ 0}

Note that the post condition is y > 0 ∧ y ≤ 0. This is equivalent to false! And false implies anything.
In particular, we have that � y > 0 ∧ y ≤ 0 =⇒ z = 55.

(vi) ` {true} y := 10; z := 0;while y > 0 do (z := z+ y; y := y − 1) {z = 55}

Answer: This is what the previous question was actually meant to be.... The loop invariant we will use
is that y ≥ 0 ∧ z = 10 + 9 + · · ·+ (y + 1) which we can write as y ≥ 0 ∧ z =

∑10
i=y+1 i.

Let’s first of all prove that the loop invariant is established when the program enters the loop (we leave part
of the proof tree elided, as an exercise for the reader):

CONS.
� true =⇒ 10 = 10 ∧ 0 = 0

...

` {10 = 10 ∧ 0 = 0} y := 10; z := 0; {y = 10 ∧ z = 0} � (y = 10 ∧ z = 0) =⇒ y ≥ 0 ∧ z =
∑10

i=y+1 i

` {true} y := 10; z := 0; {y ≥ 0 ∧ z =
∑10

i=y+1 i}

Now let’s show that it is in fact a loop invariant. For brevity let S ≡
∑10

i=y+1 i and S′ ≡
∑10

i=y−1+1 i.

WHILE

� y ≥ 0 ∧ z = S ∧ y > 0 =⇒ y − 1 ≥ 0 ∧ z + y = S′

...

1

` {y − 1 ≥ 0 ∧ z + y = S′} z := z + y; y := y − 1 {y ≥ 0 ∧ z = S} � y ≥ 0 ∧ z = S =⇒ y ≥ 0 ∧ z = S

` {y ≥ 0 ∧ z = S ∧ y > 0} z := z + y; y := y − 1 {y ≥ 0 ∧ z = S}
` {y ≥ 0 ∧ z = S} while y > 0 do (z := z + y; y := y − 1) {y ≥ 0 ∧ z = S ∧ y ≤ 0}

where
...
1

is the following derivation (where S ≡
∑10

i=y+1 i and S′ ≡
∑10

i=y−1+1 i):

Page 4 of 6

Algebraic structures; Axiomatic semantics
Section and Practice Problems

SEQ

ASG
` {y − 1 ≥ 0 ∧ z + y = S′} z := z + y {y − 1 ≥ 0 ∧ z = S′}

ASG.
` {y − 1 ≥ 0 ∧ z = S′} y := y − 1 {y ≥ 0 ∧ z = S}

` {y − 1 ≥ 0 ∧ z + y = S′} z := z + y; y := y − 1 {y ≥ 0 ∧ z = S}

Finally, we can use the fact that � y ≥ 0 ∧ z = S ∧ y ≤ 0 =⇒ z = 55 to construct a proof of the desired
triple (where c ≡ y := 10; z := 0;while y > 0 do (z := z+ y; y := y − 1)):

CONS
� true =⇒ true

SEQ

...

` {true} c {y ≥ 0 ∧ z = S ∧ y ≤ 0} � y ≥ 0 ∧ z = S ∧ y ≤ 0 =⇒ z = 55

` {true} c {z = 55}

4 Environment Semantics

For Homework 5, the monadic interpreter you will be using uses environment semantics, that is, the oper-
ational semantics of the language uses a map from variables to values instead of performing substitution.
This is a quick primer on environment semantics.

An environment ρmaps variables to values. We define a large-step operational semantics for the lambda
calculus using an environment semantics. A configuration is a pair 〈e, ρ〉 where expression e is the expres-
sion to compute and ρ is an environment. Intuitively, we will always ensure that any free variables in e are
mapped to values by environment ρ.

The evaluation of functions deserves special mention. Configuration 〈λx. e, ρ〉 is a function λx. e, defined
in environment ρ, and evaluates to the closure (λx. e, ρ). A closure consists of code along with values for all
free variables that appear in the code.

The syntax for the language is given below. Note that closures are included as possible values and ex-
pressions, and that a function λx. e is not a value (since we use closures to represent the result of evaluating
a function definition).

e ::= x | n | e1 + e2 | λx. e | e1 e2 | (λx. e, ρ)
v ::= n | (λx. e, ρ)

Note than when we apply a function, we evaluate the function body using the environment from the
closure (i.e., the lexical environment, ρlex), as opposed to the environment in use at the function application
(the dynamic environment).

〈x, ρ〉 ⇓ ρ(x) 〈n, ρ〉 ⇓ n
〈e1, ρ〉 ⇓ n1 〈e2, ρ〉 ⇓ n2

〈e1 + e2, ρ〉 ⇓ n
n = n1 + n2

〈λx. e, ρ〉 ⇓ (λx. e, ρ)

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρlex[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

For convenience, we define a rule for let expressions.

〈e1, ρ〉 ⇓ v1 〈e2, ρ[x 7→ v1]〉 ⇓ v2
〈let x = e1 in e2, ρ〉 ⇓ v2

(a) Evaluate the program let f = (let a = 5 in λx. a+ x) in f 6. Note the closure that f is bound to.

Page 5 of 6

Algebraic structures; Axiomatic semantics
Section and Practice Problems

Answer: Here is a derivation of the program.

〈5, ∅〉 ⇓ 5 〈λx. a+ x, [a 7→ 5]〉 ⇓ (λx. a+ x, [a 7→ 5])

〈let a = 5 in λx. a+ x), ∅〉 ⇓ (λx. a+ x, [a 7→ 5])

...

〈f 6, [f 7→ (λx. a+ x, [a 7→ 5])]〉 ⇓ 11

〈let f = (let a = 5 in λx. a+ x) in f 6, ∅〉 ⇓ 11

where the missing derivation is as follows (and where ρ0 = [f 7→ (λx. a+ x, [a 7→ 5])] and ρ1 = [a 7→ 5, x 7→
6])

〈f, ρ0〉 ⇓ (λx. a+ x, [a 7→ 5]) 〈6, ρ0〉 ⇓ 6

〈a, ρ1〉 ⇓ 5 〈x, ρ1〉 ⇓ 6

〈a+ x, ρ1〉 ⇓ 11

〈f 6, ρ0〉 ⇓ 11

Note that f is bound to the closure (λx. a+x, [a 7→ 5]). That is. the function λx. a+x has a lexical environment
[a 7→ 5]: when the function was defined, the variable a was bound to 5. Note that when the function is used
(f 6), the environment does not bind a at all.

(b) Suppose we replaced the rule for application with the following rule:

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρ[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

That is, we use the dynamic environment to evaluate the function body instead of the lexical environ-
ment.

What would happen if you evaluated the program let f = (let a = 5 in λx. a + x) in f 6 with this
modified semantics?

Answer: As noted in the answer to the previous question, f is bound to the closure (λx. a+ x, [a 7→ 5]), i.e.,
the lexical environment for the function λx. a+x is [a 7→ 5]: when the function was defined, the variable a was
bound to 5. When the function is used (f 6), the dynamic environment does not bind a at all. So that means
that evaluation of λx. a+x will get stuck. In particular, it will try to evaluate expression a+x in environment
[f 7→ (λx. a+ x, [a 7→ 5]), x 7→ 6] (that is, the dynamic environment at the call site extended with x mapping
to 6), and so won’t be able to evaluate the variable a.

Page 6 of 6

	Haskell
	Algebraic structures
	Axiomatic semantics
	Environment Semantics

