Harvard School of Engineering and Applied Sciences - CS 152: Programming Languages
 Dependent Types Section and Practice Problems

Apr 10-13, 2018

This week is actually a good opportunity to look back at previous section notes and material, and make sure you are comfortable with the material. This is because we don't expect you to be deeply familiar with the technical material on dependent types, nor are you required to be expert in Dafny or Coq.

1 Dependent Types

(a) Assume that boolvec has kind $(x$: $\boldsymbol{\text { nat }}) \Rightarrow$ Type and init has type ($n:$ nat $) \rightarrow$ bool \rightarrow boolvec n). Show that the expression init 5 true has type boolvec 5 ,
That is, prove
$\Gamma \vdash$ init 5 true: boolvec 5
where

$$
\Gamma=\text { boolvec }::(x: \text { nat }) \Rightarrow \text { Type, init }:(n: \text { nat }) \rightarrow \text { bool } \rightarrow \text { boolvec } n .
$$

Answer:

$\overline{\Gamma \vdash \text { init }:(n: \text { nat }) \rightarrow \text { bool } \rightarrow \text { boolvec } n \quad \Gamma \vdash 5: \text { nat }}$

$$
\Gamma \vdash \text { init } 5: \text { bool } \rightarrow \text { boolvec } 5 \quad \Gamma \quad \Gamma \vdash \text { true:bool }
$$

$\Gamma \vdash$ init 5 true: boolvec 5
(b) Show that the types boolvec $(35+7)$ and boolvec ($(\lambda y$: nat. $y) 42)$ are equivalent.

That is, prove that

$$
\Gamma \vdash \text { boolvec }(35+7) \equiv \text { boolvec }((\lambda y: \text { nat. } y) 42):: \text { Type }
$$

where

$$
\Gamma=\text { boolvec }::(x: \text { nat }) \Rightarrow \text { Type } .
$$

Answer: Let T_{1} be defined as

$$
\frac{\Gamma \vdash \text { boolvec } \equiv \text { boolvec }::(x: \text { nat }) \Rightarrow \text { Type }}{\Gamma \vdash \text { boolvec }(35+7) \equiv \text { boolvec } 42:: \text { Type }}
$$

and let T_{2} be defined as

	Γ, y : nat $\vdash y$: nat $\quad \Gamma \vdash 42$: nat
	$\Gamma \vdash(\lambda y$: nat. $y) 42 \equiv 42::$ nat
$\Gamma \vdash$ boolvec \equiv boolvec $::(x:$ nat $) \Rightarrow$ Type	$\Gamma \vdash 42 \equiv(\lambda y$: $\boldsymbol{\text { nat. }} \mathrm{y}) 42$:: nat

in

$$
\frac{T_{1}}{\Gamma \vdash \text { boolvec }(35+7) \equiv \text { boolvec } 42:: \text { Type }} \frac{T_{2}}{\Gamma \vdash \text { boolvec } 42 \equiv \text { boolvec }((\lambda y: \text { nat. } y) 42):: \text { Type }}
$$

where here T_{1} is similar to T_{2} and left as an exercise to the reader.
(c) Suppose we had a function double that takes a boolvec and returns a boolvec that is twice the length. Write an appropriate type for double. (Note that you will need make sure that the type of the boolvec argument is well formed! Hint: take a look at the type of join, mentioned in the Lecture 20 notes, for inspiration.)

Answer:

$$
(n: \text { nat }) \rightarrow \text { boolvec } n \rightarrow \text { boolvec }(n+n)
$$

Note that we need to take a natural number n as an argument, in order for us to specify the type of the second argument (i.e., a boolean vector of length n, boolvec n).
If we wrote boolvec $n \rightarrow$ boolvec $(n+n)$, then n is free and the type isn't well formed. Note that boolvec \rightarrow boolvec is not well-kinded.

2 Coq and Dafny (Optional!)

If you are interested, you can play around with Dafny online at https://rise4fun.com/dafny, A tutorial (on which the class demo was based) is available athttps://rise4fun.com/Dafny/tutorial/ Guide.

The Coq website is https://coq.inria.fr/. The easiest way to install Coq is via opam, OCaml's package manager. See https://coq.inria.fr/opam/www/using.html. In lecture, Prof. Chong was using Proof General (an extension to Emacs) to interact with Coq: https://proofgeneral.github. iol.

The Software Foundations series (https://softwarefoundations.cis.upenn.edu/) is a programminglanguages oriented introduction to using Coq.

