
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Dependent Types
Section and Practice Problems

Apr 10–13, 2018

This week is actually a good opportunity to look back at previous section notes and material, and make
sure you are comfortable with the material. This is because we don’t expect you to be deeply familiar with
the technical material on dependent types, nor are you required to be expert in Dafny or Coq.

1 Dependent Types

(a) Assume that boolvec has kind (x :nat)⇒ Type and init has type (n : nat)→ bool→ boolvec n).

Show that the expression init 5 true has type boolvec 5,

That is, prove
Γ ` init 5 true :boolvec 5

where
Γ = boolvec :: (x :nat)⇒ Type, init : (n : nat)→ bool→ boolvec n.

Answer:

Γ ` init : (n : nat)→ bool→ boolvec n Γ ` 5:nat

Γ ` init 5:bool→ boolvec 5 Γ ` true :bool

Γ ` init 5 true :boolvec 5

(b) Show that the types boolvec (35 + 7) and boolvec ((λy :nat. y) 42) are equivalent.

That is, prove that

Γ ` boolvec (35 + 7) ≡ boolvec ((λy :nat. y) 42) ::Type

where
Γ = boolvec :: (x :nat)⇒ Type.

Answer: Let T1 be defined as

Γ ` boolvec ≡ boolvec :: (x :nat)⇒ Type Γ ` 35 + 7 ≡ 42::nat

Γ ` boolvec (35 + 7) ≡ boolvec 42::Type

and let T2 be defined as

Γ ` boolvec ≡ boolvec :: (x :nat)⇒ Type

Γ, y :nat ` y :nat Γ ` 42:nat

Γ ` (λy :nat. y) 42 ≡ 42::nat

Γ ` 42 ≡ (λy :nat. y) 42::nat

Γ ` boolvec 42 ≡ boolvec ((λy :nat. y) 42) ::Type



Dependent Types
Section and Practice Problems

in
T1

Γ ` boolvec (35 + 7) ≡ boolvec 42::Type

T2

Γ ` boolvec 42 ≡ boolvec ((λy :nat. y) 42) ::Type

Γ ` boolvec (35 + 7) ≡ boolvec ((λy :nat. y) 42) ::Type

where here T1 is similar to T2 and left as an exercise to the reader.

(c) Suppose we had a function double that takes a boolvec and returns a boolvec that is twice the length.
Write an appropriate type for double. (Note that you will need make sure that the type of the boolvec
argument is well formed! Hint: take a look at the type of join, mentioned in the Lecture 20 notes, for
inspiration.)

Answer:
(n :nat)→ boolvec n→ boolvec (n+ n)

Note that we need to take a natural number n as an argument, in order for us to specify the type of the second
argument (i.e., a boolean vector of length n, boolvec n).

If we wrote boolvec n→ boolvec (n+n), then n is free and the type isn’t well formed. Note that boolvec→
boolvec is not well-kinded.

2 Coq and Dafny (Optional!)

If you are interested, you can play around with Dafny online at https://rise4fun.com/dafny. A tu-
torial (on which the class demo was based) is available at https://rise4fun.com/Dafny/tutorial/
Guide.

The Coq website is https://coq.inria.fr/. The easiest way to install Coq is via opam, OCaml’s
package manager. See https://coq.inria.fr/opam/www/using.html. In lecture, Prof. Chong was
using Proof General (an extension to Emacs) to interact with Coq: https://proofgeneral.github.
io/.

The Software Foundations series (https://softwarefoundations.cis.upenn.edu/) is a programming-
languages oriented introduction to using Coq.

Page 2 of 2

https://rise4fun.com/dafny
https://rise4fun.com/Dafny/tutorial/Guide
https://rise4fun.com/Dafny/tutorial/Guide
https://coq.inria.fr/
https://coq.inria.fr/opam/www/using.html
https://proofgeneral.github.io/
https://proofgeneral.github.io/
https://softwarefoundations.cis.upenn.edu/

	Dependent Types
	Coq and Dafny (Optional!)

