
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Lambda calculus

Lecture 7 Tuesday, February 19, 2019

The lambda calculus (or λ-calculus) was introduced by Alonzo Church and Stephen Cole Kleene in the
1930s to describe functions in an unambiguous and compact manner. Many real languages are based on
the lambda calculus, such as Lisp, Scheme, Haskell, and ML. A key characteristic of these languages is
that functions are values, just like integers and booleans are values: functions can be used as arguments to
functions, and can be returned from functions.

The name “lambda calculus” comes from the use of the Greek letter lambda (λ) in function definitions.
(The letter lambda has no significance.) “Calculus” means a method of calculating by the symbolic manip-
ulation of expressions.

Intuitively, a function is a rule for determining a value from an argument. Some examples of functions
in mathematics are

f(x) = x3

g(y) = y3 − 2y2 + 5y − 6.

1 Syntax

The pure λ-calculus contains just function definitions (called abstractions), variables, and function application
(i.e., applying a function to an argument). If we add additional data types and operations (such as integers
and addition), we have an applied λ-calculus. In the following text, we will sometimes assume that we have
integers and addition in order to give more intuitive examples.

The syntax of the pure λ-calculus is defined as follows.

e ::= x variable
| λx. e abstraction
| e1 e2 application

An abstraction λx. e is a function: variable x is the argument, and expression e is the body of the function.
Note that the function λx. e doesn’t have a name. Assuming we have integers and arithmetic operations,
the expression λy. y × y is a function that takes an argument y and returns square of y.

An application e1 e2 requires that e1 is (or evaluates to) a function, and then applies the function to the
expression e2. For example, (λy. y × y) 5 is, intuitively, equal to 25, the result of applying the squaring
function λy. y × y to 5.

Here are some examples of lambda calculus expressions.

λx. x a lambda abstraction called the identity function
λx. (f (g x))) another abstraction
(λx. x) 42 an application
λy. λx. x an abstraction that ignores its argument and returns the identity function

Lambda expressions extend as far to the right as possible. For example λx. x λy. y is the same as
λx. (x (λy. y)), and is not the same as (λx. x) (λy. y). Application is left associative. For example e1 e2 e3 is
the same as (e1 e2) e3. In general, use parentheses to make the parsing of a lambda expression clear if you
are in doubt.



Lecture 7 Lambda calculus

1.1 Variable binding and α-equivalence

An occurrence of a variable in an expression is either bound or free. An occurrence of a variable x in a term
is bound if there is an enclosing λx. e; otherwise, it is free. A closed term is one in which all identifiers are
bound.

Consider the following term:

λx. (x (λy. y a) x) y

Both occurrences of x are bound, the first occurrence of y is bound, the a is free, and the last y is also
free, since it is outside the scope of the λy.

If a program has some variables that are free, then you do not have a complete program as you do not
know what to do with the free variables. Hence, a well formed program in lambda calculus is a closed term.

The symbol λ is a binding operator, as it binds a variable within some scope (i.e., some part of the expres-
sion): variable x is bound in e in the expression λx. e.

The name of bound variables is not important. Consider the mathematical integrals
∫ 7

0
x2dx and

∫ 7

0
y2dy.

They describe the same integral, even though one uses variable x and the other uses variable y in their
definition. The meaning of these integrals is the same: the bound variable is just a placeholder. In the same
way, we can change the name of bound variables without changing the meaning of functions. Thus λx. x is
the same function as λy. y. Expressions e1 and e2 that differ only in the name of bound variables are called
α-equivalent (“alpha equivalent”), sometimes written e1 =α e2.

1.2 Higher-order functions

In lambda calculus, functions are values: functions can take functions as arguments and return functions
as results. In the pure lambda calculus, every value is a function, and every result is a function!

For example, the following function takes a function f as an argument, and applies it to the value 42.

λf. f 42

This function takes an argument v and returns a function that applies its own argument (a function) to
v.

λv. λf. (f v)

2 Semantics

2.1 β-equivalence

Application (λx. e1) e2 applies the function λx. e1 to e2. In some ways, we would like to regard the expres-
sion (λx. e1) e2 as equivalent to the expression e1 where every (free) occurrence of x is replaced with e2. For
example, we would like to regard (λy. y × y) 5 as equivalent to 5× 5.

We write e1{e2/x} to mean expression e1 with all free occurrences of x replaced with e2. There are
several different notations to express this substitution, including [x 7→ e2]e1 (used by Pierce), [e2/x]e1 (used
by Mitchell), and e1[e2/x] (used by Winskel).

Using our notation, we would like expressions (λx. e1) e2 and e1{e2/x} to be equivalent.
We call this equivalence, between (λx. e1) e2 and e1{e2/x}, is called β-equivalence. Rewriting (λx. e1) e2

into e1{e2/x} is called a β-reduction. Given a lambda calculus expression, we may, in general, be able to
perform β-reductions. This corresponds to executing a lambda calculus expression.

There may be more than one possible way to β-reduce an expression. Consider, for example, (λx. x +
x) ((λy. y) 5). We could use β-reduction to get either ((λy. y) 5) + ((λy. y) 5) or (λx. x + x) 5. The order in
which we perform β-reductions results in different semantics for the lambda calculus.

Page 2 of 5



Lecture 7 Lambda calculus

2.2 Evaluation strategies

There are many different evaluation strategies for the lambda calculus. The most permissive is full β-
reduction, which allows any redex—i.e., any expression of the form (λx. e1) e2—to step to e1{e2/x} at any
time. It is defined formally by the following small-step operational semantics rules.

e1 −→ e′1

e1 e2 −→ e′1 e2

e2 −→ e′2

e1 e2 −→ e1 e
′
2

e −→ e′

λx. e −→ λx. e′
β-REDUCTION

(λx. e1) e2 −→ e1{e2/x}

A term e is said to be in normal form when it cannot be reduced any further, that is, when there is no e′

such that e −→ e′. It is convenient to say that term e has normal form e′ if e −→∗ e′ with e′ in normal form.
Not every term has a normal form under full β-reduction. Consider the expression (λx. x x) (λx. x x),

which we will refer to as Ω for brevity. Let’s try evaluating Ω.

Ω = (λx. x x) (λx. x x) −→ (λx. x x) (λx. x x) = Ω

Evaluating Ω never reaches a term in normal form! It is an infinite loop!
When a term has a normal form, however, it never has more than one. This is not a given, because clearly

the full β-reduction strategy is non-deterministic. Look at the term (λx. λy. y) Ω (λz. .z), for example. It has
two redexes in it, the one with abstraction λx, and the one inside Ω. But this nondeterminism is well
behaved: when different sequences of reduction reach a normal form (they need not) those normal forms
are equal.

Formally, full β-reduction is confluent in the following sense:

Theorem 1 (Confluence). If e −→∗ e1 and e −→∗ e2 then there exists e′ such that e1 −→∗ e′ and e2 −→∗ e′.

Confluence can be depicted graphically as follows (where � is used to represent −→∗):

e

e1 e2

e′

Confluence is often also called the Church-Rosser property. It is not an easy result to prove. (It would
make sense for it to be a proof by induction on the multi-step reduction −→∗.Try it, and see where you get
stuck.)

Corollary 1. If e −→∗ e1 and e −→∗ e2 and both e1 and e2 are in normal form, then e1 = e2.

Proof. An easy consequence of confluence.

Other evaluation strategies are possible, which impose a deterministic order on the reductions. For
example, normal order evaluation uses the full β-reduction rules, except imposes the order that the left-most
redex—that is, the redex in which the leading λ appears left-most in the term—is always reduced first.
Normal order evaluation guarantees that if a term has a normal form, applying reductions in normal order
will eventually yield that normal form.

Normal order evaluation allows reducing redexes inside abstractions, which may strike you as odd
if you rely on your programmer’s intuition: a function definition does not simply reduce its body, un-
prompted. That’s because most programming languages use reduction strategies that when put in lambda
calculus terms do not perform reductions inside abstractions.

Two common evaluations strategies that occur in programming languages are call-by-value and call-by-
name.

Page 3 of 5



Lecture 7 Lambda calculus

Call-by-value (or CBV) evaluation strategy is more restrictive: it only allows an application to reduce
after its argument has been reduced to a value and does not allow evaluation under a λ. That is, given an
application (λx. e1) e2, CBV semantics makes sure that e2 is a value before calling the function.

So, what is a value? In the pure lambda calculus, any abstraction is a value. Remember, an abstraction
λx. e is a function; in the pure lambda calculus, the only values are functions. In an applied lambda calculus
with integers and arithmetic operations, values also include integers. Intuitively, a value is an expression
that can not be reduced/executed/simplified any further.

We can give small step operational semantics for call-by-value execution of the lambda calculus. Here,
v can be instantiated with any value (e.g., a function).

e1 −→ e′1

e1 e2 −→ e′1 e2

e −→ e′

v e −→ v e′
β-REDUCTION

(λx. e) v −→ e{v/x}

We can see from these rules that, given an application e1 e2, we first evaluate e1 until it is a value, then
we evaluate e2 until it is a value, and then we apply the function to the value—a β-reduction.

Let’s consider some examples. (These examples use an applied lambda calculus that also includes re-
duction rules for arithmetic expressions.)

(λx. λy. y x) (5 + 2) λx. x+ 1 −→(λx. λy. y x) 7 λx. x+ 1

−→(λy. y 7) λx. x+ 1

−→(λx. x+ 1) 7

−→7 + 1

−→8

(λf. f 7) ((λx. x x) λy. y) −→(λf. f 7) ((λy. y) (λy. y))

−→(λf. f 7) (λy. y)

−→(λy. y) 7

−→7

Call-by-name (or CBN) semantics are more permissive that CBV, but less permissive than full β-reduction.
CBN semantics applies the function as soon as possible. The small step operational semantics are a little
simpler, as they do not need to ensure that the expression to which a function is applied is a value.

e1 −→ e′1

e1 e2 −→ e′1 e2
β-REDUCTION

(λx. e1) e2 −→ e1{e2/x}

Let’s consider the same examples we used for CBV.

(λx. λy. y x) (5 + 2) λx. x+ 1 −→(λy. y (5 + 2)) λx. x+ 1

−→(λx. x+ 1) (5 + 2)

−→(5 + 2) + 1

−→7 + 1

−→8

(λf. f 7) ((λx. x x) λy. y) −→((λx. x x) λy. y) 7

−→((λy. y) (λy. y)) 7

−→(λy. y) 7

−→7

Page 4 of 5



Lecture 7 Lambda calculus

Note that the answers are the same, but the order of evaluation is different. (Later we will see languages
where the order of evaluation is important, and may result in different answers.)

One way in which CBV and CBN differ is when arguments to functions have no normal forms. For
instance, consider the following term:

(λx.(λy.y)) Ω

If we use CBV semantics to evaluate the term, we must reduce Ω to a value before we can apply the
function. But Ω never evaluates to a value, so we can never apply the function. Under CBV semantics, this
term does not have a normal form.

If we use CBN semantics, then we can apply the function immediately, without needing to reduce the
actual argument to a value. We have

(λx.(λy.y)) Ω −→CBN λy.y

CBV and CBN are common evaluation orders; many programming languages use CBV semantics. So-
called “lazy” languages, such as Haskell, typically use Call-by-need semantics, a more efficient semantics
similar to CBN in that it does not evaluate actual arguments unless necessary. However, Call-by-need
semantics ensures that arguments are evaluated at most once.

Page 5 of 5


