Harvard School of Engineering and Applied Sciences - CS 152: Programming Languages
 Induction; Small-step operational semantics; Large-step operational semantics Section and Practice Problems

Week 3: Tue Feb 12-Fri Feb 15, 2019

1 Induction

Let's inductively define a set of integers Quux with the following inference rules.
(a) Of the rules above (i.e., RULE1, RULE2, and RULE3), which are axioms and which are inductive rules?

Answer: The rules RULE1 and RULE2 are axioms: they have no premises. Rule RULE3 is an inductive rule: it has one or more premises.
(b) Give a derivation showing that 11 is in the set Quux.

Answer:

RULE2		Rule2	
RULE3	$5 \in Q u u x$		$5 \in Q u \boldsymbol{x}$

(c) Give a derivation showing that 20 is in the set Quux.

Answer:

(d) Write down the inductive reasoning principle for Quux. That is, if you wanted to prove that for some property P, for all $a \in$ Quux we have $P(a)$, what would you need to show? (See Lecture $3 \S 2.2$ and §2.3.)

Answer: For any property P, If

- Rule1: $P(8)$ holds.
- Rule2: $P(5)$ holds.
- Rule3: For all $a \in$ Quux and all $4 \in$ Quux, if $P(a)$ and $P(b)$ then $P(c)$ where $c=a+b+1$.
then
for all $a \in Q u u x, P(a)$ holds.
(e) Prove that for all $a \in$ Quux, there exists $i \in \mathbb{Z}$ such that $a=3 \times i-1$.

Make sure that you follow the Recipe for Inductive Proofs! See Lecture 3 §2.5. What set are you inducting on? What is the property you are trying to prove? Go through each case.

Answer: The property we will prove for all $a \in$ Quux is $P(a)=\exists i \in \mathbb{Z} . a=3 \times i-1$. We proceed by induction on the derivation of $a \in Q u u x$.

- Rule1. Here, $a=8$. Note that $8=3 \times 3-1$, and so $P(a)$ holds, as required.
- Rule2. Here, $a=5$. Note that $5=3 \times 2-1$, and so $P(a)$ holds, as required.
- Rule3. Here, $a=b+c+1$ where $b \in Q u u x$ and $c \in Q u u x$. Assume that $P(b)$ and $P(c)$. That is, there exists some i and j such that $b=3 \times i-1$ and $c=3 \times j-1$.
We have

$$
\begin{aligned}
a & =b+c+1 \\
& =(3 \times i-1)+(3 \times j-1)+1 \\
& =3 \times(i+j)-1
\end{aligned}
$$

So there exists an integer k (namely, $k=i+j$) such that $a=3 \times k-1$, and so $P(a)$ holds, as required.
(f) Is 2 in the set Quux? If so, give a derivation proving it.

Answer: 2 is not in the set Quux. How would you go about proving that this is the case? (Hint: could you prove some property that holds true of all elements of Quux, and that property isn't true of 2?) Turn page around for an answer... (Whoa, answers inside answers; it's answers all the way down...)

2 Small-step operational semantics

Consider the small-step operational semantics for the language of arithmetic expressions (Lecture 2). Let σ_{0} be a store that maps all program variables to zero.
(a) Show a derivation that $\left\langle 3+(5 \times\right.$ bar $\left.), \sigma_{0}\right\rangle \longrightarrow\left\langle 3+(5 \times 0), \sigma_{0}\right\rangle$.

Answer:

$$
\operatorname{RADD} \frac{\operatorname{RMUL} \frac{\operatorname{VAR} \frac{\text { bar } \left., \sigma_{0}\right\rangle \longrightarrow\left\langle 0, \sigma_{0}\right\rangle}{\left\langle 5 \times \text { bar, } \sigma_{0}\right\rangle \longrightarrow\left\langle 5 \times 0, \sigma_{0}\right\rangle}}{\left\langle 3+(5 \times \text { bar }), \sigma_{0}\right\rangle \longrightarrow\left\langle 3+(5 \times 0), \sigma_{0}\right\rangle}}{\text { 位 }}
$$

(b) What is the sequence of configurations that $\left\langle\mathrm{foo}:=5\right.$; $\left.(\mathrm{foo}+2) \times 7, \sigma_{0}\right\rangle$ steps to? (You don't need to show the derivations for each step, just show what configuration $\left\langle\mathrm{foo}:=5 ;(\mathrm{foo}+2) \times 7, \sigma_{0}\right\rangle$ steps to in one step, then two steps, then three steps, and so on, until you reach a final configuration.)

Answer:

	$\langle\mathrm{foo}:=5 ;(\mathrm{foo}+2) \times 7$	
	,σ_{0}	\rangle
\longrightarrow	$\langle(\mathrm{foo}+2) \times 7$,$\sigma_{0}[\mathrm{foo} \mapsto 5]$
\longrightarrow	$\langle(5+2) \times 7$,$\sigma_{0}[\mathrm{foo} \mapsto 5]$
$\longrightarrow\langle 7 \times 7$,$\sigma_{0}[\mathrm{foo} \mapsto 5]$	\rangle
$\longrightarrow\langle 49$,$\sigma_{0}[\mathrm{foo} \mapsto 5]$	\rangle

(c) Find an integer n and store σ^{\prime} such that $\left\langle((6+(\right.$ foo $\left.:=(\mathrm{bar}:=3 ; 5) ; 1+\mathrm{bar}))+\mathrm{bar}) \times \mathrm{foo}, \sigma_{0}\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$.

Answer: Let's step through the execution of the configuration, to find a final configuration.

$$
\left.\left.\begin{array}{lll}
& \langle((6+(\text { foo }:=(\text { bar }:=3 ; 5) ; 1+\text { bar }))+\text { bar }) \times \text { foo } & , \sigma_{0} \\
\longrightarrow & \langle((6+(\text { foo }:=5 ; 1+\text { bar }))+\text { bar }) \times \text { foo } & , \sigma_{0}[\text { bar } \mapsto 3] \\
\longrightarrow & \langle((6+(1+\text { bar }))+\text { bar }) \times \text { foo } & , \sigma_{0}[\text { bar } \mapsto 3, \text { foo } \mapsto 5]
\end{array}\right\rangle\right\rangle
$$

(d) Is the relation \longrightarrow reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?
(For each of these questions, if the answer is "no", what is a suitable counterexample? If any of the answers are "yes", think about how you would prove it.)

Answer: The relation \longrightarrow is not reflexive. A relation R is reflexive if for all x in the domain of R we have $x R x$. Consider, for example, $\left\langle 42, \sigma_{0}\right\rangle$. It is not the case that $\left\langle 42, \sigma_{0}\right\rangle \longrightarrow\left\langle 42, \sigma_{0}\right\rangle$, and so \longrightarrow is not reflexive.
The relation \longrightarrow is not symmetric. A relation R is symmetric if for all x, y such that $x R y$ we have $y R x$. Consider, for example, $\left\langle 39+3, \sigma_{0}\right\rangle$ and $\left\langle 42, \sigma_{0}\right\rangle$. We have $\left\langle 39+3, \sigma_{0}\right\rangle \longrightarrow\left\langle 42, \sigma_{0}\right\rangle$ but we do not have $\left\langle 42, \sigma_{0}\right\rangle \longrightarrow\left\langle 39+3, \sigma_{0}\right\rangle$. So \longrightarrow is not symmetric.

The relation \longrightarrow is anti-symmetric. A relation R is anti-symmetric if for all distinct x and y we do not have both $x R y$ and $y R x$. In our setting, if we have (distinct) configurations $\langle e, \sigma\rangle$ and $\left\langle e^{\prime}, \sigma^{\prime}\right\rangle$ such that $\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle$, then we do not have that $\left\langle e^{\prime}, \sigma^{\prime}\right\rangle \longrightarrow\langle e, \sigma\rangle$.
Here is one way to prove this. If we did have distinct configurations $\langle e, \sigma\rangle$ and $\left\langle e^{\prime}, \sigma^{\prime}\right\rangle$ such that $\langle e, \sigma\rangle \longrightarrow$ $\left\langle e^{\prime}, \sigma^{\prime}\right\rangle$ and $\left\langle e^{\prime}, \sigma^{\prime}\right\rangle \longrightarrow\langle e, \sigma\rangle$, then we could construct an infinite sequence of small steps:

$$
\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle \longrightarrow\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle \longrightarrow\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle \longrightarrow \ldots
$$

But this would contradict the property that all programs in our language of arithmetic expressions with assignments terminate!
The relation \longrightarrow is not transitive. A relation R is transitive if for all x, y, z, if $x R y$ and $y R z$ then $x R z$. Consider the configurations $\left\langle(2+3) \times 7, \sigma_{0}\right\rangle$ and $\left\langle 5 \times 7, \sigma_{0}\right\rangle$ and $\left\langle 42, \sigma_{0}\right\rangle$. We have $\left\langle(2+3) \times 7, \sigma_{0}\right\rangle \longrightarrow$ $\left\langle 5 \times 7, \sigma_{0}\right\rangle$ and $\left\langle 5 \times 7, \sigma_{0}\right\rangle \longrightarrow\left\langle 42, \sigma_{0}\right\rangle$ but we do not have $\left\langle(2+3) \times 7, \sigma_{0}\right\rangle \longrightarrow\left\langle 42, \sigma_{0}\right\rangle$.

3 Large-step operational semantics

Consider the large-step operational semantics for the language of arithmetic expressions (Lecture 4). Let σ_{0} be a store that maps all program variables to zero.
(a) Show a derivation that $\left\langle 3+(5 \times\right.$ bar $\left.), \sigma_{0}\right\rangle \Downarrow\left\langle 3, \sigma_{0}\right\rangle$.

Answer:

$$
\frac{\overline{\left\langle 3, \sigma_{0}\right\rangle \Downarrow\left\langle 3, \sigma_{0}\right\rangle} \quad \frac{\overline{\left\langle 5, \sigma_{0}\right\rangle \Downarrow\left\langle 5, \sigma_{0}\right\rangle} \quad \overline{\left\langle\text { bar }, \sigma_{0}\right\rangle \Downarrow\left\langle 0, \sigma_{0}\right\rangle}}{\left\langle 5 \times \text { bar }, \sigma_{0}\right\rangle \Downarrow\left\langle 0, \sigma_{0}\right\rangle}}{\left\langle 3+(5 \times \text { bar }), \sigma_{0}\right\rangle \Downarrow\left\langle 3, \sigma_{0}\right\rangle}
$$

(b) Find an integer n and store σ^{\prime} such that $\left\langle\right.$ foo $:=5 ;($ foo +2$\left.) \times 7, \sigma_{0}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$.

If you have time and a big piece of paper, give the derivation of $\left\langle\mathrm{foo}:=5 ;(\mathrm{foo}+2) \times 7, \sigma_{0}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$.

Answer: We have $\left\langle\right.$ foo $:=5 ;($ foo +2$\left.) \times 7, \sigma_{0}\right\rangle \Downarrow\left\langle 49, \sigma_{0}[\right.$ foo $\left.\mapsto 5]\right\rangle$.
In the following derivation, let $\sigma^{\prime}=\sigma_{0}[\mathrm{foo} \mapsto 5]$.

$$
\frac{\frac{\frac{\left.\overline{\langle f o o}, \sigma^{\prime}\right\rangle \Downarrow\left\langle 5, \sigma^{\prime}\right\rangle}{\left\langle\mathrm{foo}+2, \sigma^{\prime}\right\rangle \Downarrow\left\langle 7, \sigma^{\prime}\right\rangle}}{\left\langle 5, \sigma_{0}\right\rangle \Downarrow\left\langle 5, \sigma_{0}\right\rangle} \quad \frac{\left\langle(\mathrm{foo}+2) \times 7, \sigma^{\prime}\right\rangle \Downarrow\left\langle 49, \sigma^{\prime}\right\rangle}{\overline{\left\langle 7, \sigma^{\prime}\right\rangle \Downarrow\left\langle 7, \sigma^{\prime}\right\rangle}}}{\left\langle\mathrm{foo}:=5 ;(\mathrm{foo}+2) \times 7, \sigma_{0}\right\rangle \Downarrow\left\langle 49, \sigma^{\prime}\right\rangle}
$$

(c) Is the relation \Downarrow reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?
(For each of these questions, if the answer is "no", what is a suitable counterexample? If any of the answers are "yes", think about how you would prove it.)

Answer: The relation \Downarrow is not reflexive. A relation R is reflexive if for all x in the domain of R we have $x R x$. Consider, for example, $\left\langle 3+4, \sigma_{0}\right\rangle$. It is not the case that $\left\langle 3+4, \sigma_{0}\right\rangle \Downarrow\left\langle 3+4, \sigma_{0}\right\rangle$, and so \Downarrow is not reflexive.
The relation \Downarrow is not symmetric. A relation R is symmetric if for all x, y such that $x R y$ we have $y R x$. Consider, for example, $\left\langle 39+3, \sigma_{0}\right\rangle$ and $\left\langle 42, \sigma_{0}\right\rangle$. We have $\left\langle 39+3, \sigma_{0}\right\rangle \Downarrow\left\langle 42, \sigma_{0}\right\rangle$ but we do not have $\left\langle 42, \sigma_{0}\right\rangle \Downarrow\left\langle 39+3, \sigma_{0}\right\rangle$. So \Downarrow is not symmetric.

The relation \Downarrow is not anti-symmetric. A relation R is anti-symmetric if for all distinct x and y we do not have both $x R y$ and $y R x$. In our setting, if we have (distinct) configurations $\langle e, \sigma\rangle$ and $\left\langle n, \sigma^{\prime}\right\rangle$ such that $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$ and e^{\prime} is not an integer, then we do not have that $\left\langle n, \sigma^{\prime}\right\rangle \Downarrow\langle e, \sigma\rangle$.
This can be proven by inspection of the rules, or by induction on the derivation of $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$.
The relation \Downarrow is transitive. A relation R is transitive if for all x, y, z, if $x R y$ and $y R z$ then $x R z$. To prove this, suppose that $\langle e, \sigma\rangle \Downarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle$ and $\left\langle e^{\prime}, \sigma^{\prime}\right\rangle \Downarrow\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle$. By examination of the rules, we have that e^{\prime} is an integer. Thus, by the rule INT we have $\left\langle e^{\prime}, \sigma^{\prime}\right\rangle \Downarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle$. Moreover, by the determinism of the arithmetic language (which we discussed in Lecture 2), we have that $e^{\prime}=e^{\prime \prime}$ and $\sigma^{\prime}=\sigma^{\prime \prime}$. Thus we have that $\langle e, \sigma\rangle \Downarrow\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle$ as required.

