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1 Logic Programming

To try playing around with Prolog, go to http://www.swi-prolog.org/. You will be able to use Prolog
online at https://swish.swi-prolog.org/.

To try playing around with Datalog, you can go to either http://abcdatalog.seas.harvard.
edu/ to download a Java-based Datalog implementation, or you can go to https://datalog.db.in.
tum.de/ to use Datalog online.

Although you can use the tools above to get the answers to the section problems below very easily, work
out the answers by hand (to make sure you understand the semantics of Prolog and Datalog), and then you
can check your answers by using the tools to execute the programs.

(a) Consider the following Prolog program (where [] is a constant representing the empty list, [t] is short-
hand for cons(t, []) and [t1, t2|t3] is shorthand for cons(t1, cons(t2, t3)).

foo([], []).

foo([X], [X]).

foo([X,Y |S], [Y,X|T ]) :- foo(S, T ).

For each of the following queries, compute the substitutions that Prolog will generate, if any. (Note
that there is a difference between an empty substitution, and no substitution.) If the query evaluation
will not terminate, explain why.

• foo([a, b], X).

• foo([a, b, c], X).

• foo([a, b], [a, b])

• foo(X, [a])

• foo(X,Y ).

Answer: Intuitively, foo(S, T ) holds for two lists S and T if they are the same length, and for all i, the 2ith
and 2i+ 1th elements of S are equal, respectively, to the 2i+ 1th and 2ith elements of T .

• foo([a, b], X).

X = [b,a]

• foo([a, b, c], X).

X = [b,a,c]

• foo([a, b], [a, b])

No substitutions returned

• foo(X, [a])

X = [a]
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• foo(X,Y ).

X = [], Y = []

X = [A, B], Y = [B, A]

X = [A, B, C], Y = [B, A, C]

X = [A, B, C, D], Y = [B, A, D, C]

X = [A, B, C, D, E], Y = [B, A, D, C, E]

X = [A, B, C, D, E, F], Y = [B, A, D, C, F, E]

...
The evaluation of the query never terminates.

(b) Consider the following Datalog program.

bar(a, b, c).

bar(X,Y, Z) :- bar(Y,X,Z).
bar(X,Y, Z) :- bar(Z, Y,X), quux(X,Z).

quux(b, c).

quux(c, d).

quux(X,Y ) :- quux(Y,X).

quux(X,Z) :- quux(X,Y ), quux(Y,Z).

Find all solutions to the query bar(X,Y, Z).

Answer: We start by the set of facts that are known, S0, and then given Si we produce Si+1 by unifying the
horn clauses with the known facts to derive new facts, and repeat until we reach a fixed point.

S0 = {bar(a, b, c)., quux(b, c)., quux(c, d).}
S1 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).}
S2 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).,

bar(c, a, b)., quux(d, b)., quux(b, b).quux(c, c).}
S3 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).,

bar(c, a, b)., quux(d, b)., quux(b, b).quux(c, c)., bar(a, c, b).}
S4 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).,

bar(c, a, b)., quux(d, b)., quux(b, b).quux(c, c)., bar(a, c, b).}

Since S3 and S4 are the same (i.e., applying the rules to S3 doesn’t derive any new facts) we have a fixed point.
So all solutions to the query bar(X,Y, Z)? are:

bar(a, b, c).

bar(b, a, c).

bar(c, a, b).

bar(a, c, b).

(c) Suppose that we represent a directed graph using the predicates edge(X,Y ) to indicate that there is

Page 2 of 6



Logic Programming; Dynamic Types
Section and Practice Problems

an edge from node X to node Y . For example, the following graph is represented by the following
facts:

a b c

d

node(a).

node(b).

node(c).

node(d).

edge(a, b).

edge(b, c).

edge(c, d).

edge(d, b).

(i) Write a Datalog program that computes reachable(X,Y ), where reachable(X,Y ) holds if there is
a path (of zero or more edges) from X to Y .

Answer:

reachable(X,X) :- node(X).

reachable(X,Y ) :- edge(X,Z), reachable(Z, Y ).

Note that we can’t just use the clause reachable(X,X)., as that would not bind variable X in the body of
clause, which violates the requirements of Datalog. That is, X is reachable from itself only if X is a node.

(ii) Write a Datalog program that computes sameSCC(X,Y ), where sameSCC(X,Y ) holds if nodes X
and node Y are in the same strongly connected component. (Hint: use the predicate reachable.)

Answer: Two nodes a and b are in the same strongly connected component if and only if there is a path
from a to b, and a path from b to a.

sameSCC(X,Y ) :- reachable(X,Y ), reachable(Y,X).

For our example graph above, node a is in its own strongly connected component, but nodes b, c, and d
are in the same SCC. So the result of the query sameSCC(X,Y )? is the following:

sameSCC(a, a)
sameSCC(b, b)
sameSCC(b, c)
sameSCC(b, d)
sameSCC(c, b)
sameSCC(c, c)
sameSCC(c, d)
sameSCC(d, b)
sameSCC(d, c)
sameSCC(d, d)
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2 Dynamic types and contracts

This material will be covered in Lecture on Tuesday April 30; we include it here so that later sections
can be focused on comprehensive review.

(a) To make sure you understand the operational semantics of dynamic types and exceptions, show the
execution of the following program under the semantics of Section 1 of the Lecture 25 notes.

let f = λx. 42 + x in
let g = λy. (y true) + 42 in
g f

Answer:

let f = λx. 42 + x in let g = λy. (y true) + 42 in g f
−→let g = λy. (y true) + 42 in g (λx. 42 + x)

−→(λy. (y true) + 42) (λx. 42 + x)

−→((λx. 42 + x) true) + 42

−→(42 + true) + 42

−→Err + 42

−→Err

(b) Modify the program from question (a) by adding appropriate error handlers (i.e., expressions of the
form try e1 catch x. e2 to catch the type error and return the integer 42 as the final result of the program.
There are multiple places in the program where you can insert an error handler to achieve the desired
result. Show three variations and their executions. (Note that the semantics for the execution of your
programs is from Part 2 (Exception handling) of the Lecture 22 notes.)

Answer: Here is a version where we add an error handler in the body of function f .

let f = λx. (try (42 + x) catch z. 0) in
let g = λy. (y true) + 42 in
g f

let f = λx. (try (42 + x) catch z. 0) in let g = λy. (y true) + 42 in g f
−→let g = λy. (y true) + 42 in g (λx. (try (42 + x) catch z. 0))

−→(λy. (y true) + 42) (λx. (try (42 + x) catch z. 0))

−→((λx. (try (42 + x) catch z. 0)) true) + 42

−→(try (42 + true) catch z. 0) + 42

−→(try (Err 1) catch z. 0) + 42

−→0 + 42

−→42
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Here’s another version, where we add an error handler in the body of function g.

let f = λx. 42 + x in
let g = λy. (try (y true) catch z. 0) + 42 in
g f

let f = λx. 42 + x in let g = λy. (try (y true) catch z. 0) + 42 in g f
−→let g = λy. (try (y true) catch z. 0) + 42 in g (λx. 42 + x)

−→(λy. (try (y true) catch z. 0) + 42) (λx. 42 + x)

−→(try (λx. 42 + x) true) catch z. 0) + 42

−→(try (42 + true) catch z. 0) + 42

−→(try (Err 1) catch z. 0) + 42

−→0 + 42

−→42

Finally, here is a version where we put the error handling code at the top level.

let f = λx. 42 + x in
let g = λy. (y true) + 42 in
try g f catch z. 42

let f = λx. 42 + x in let g = λy. (y true) + 42 in try g f catch z. 42

−→let g = λy. (y true) + 42 in try g (λx. 42 + x) catch z. 42

−→try (λy. (y true) + 42) (λx. 42 + x) catch z. 42

−→try (((λx. 42 + x) true) + 42) catch z. 42

−→try ((42 + true) + 42) catch z. 42

−→try ((Err 1) + 42) catch z. 42

−→try (Err 1) catch z. 42

−→42

(c) Modify the program from question (a) by adding appropriate dynamic type checks to raise the error
as early as possible. When does your program detect the error?

Answer: This version of the code adds dynamic type checks on all arguments and on results of function
applications.

let f = λx. if (is int? x) then 42 + x else raise 3 in
let g = λy. if (is fun? y) then

let y′ = (y true) in if (is int? y′) then y′ + 42 else raise 3

else

raise 3 in
let a = g f in if (is int? a) then a else raise 3
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The execution detects the error as soon as function f is invoked, i.e., is int? x evaluates to false when x is
replaced with true.

(d) Modify the program from question (a) by adding contracts that specify the types of the input and
output of f and g. Show the execution of the modified program.

Answer:

let f = monitor(λx. 42 + x, is int? 7−→ is int? ) in
let g = monitor(λy. (y true) + 42, (is bool? 7−→ is int? ) 7−→ is int? ) in
g f
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