Tuesday, February 11, 2020

1 Large-step semantics

So far we have defined the small step evaluation relation $\longrightarrow \subseteq$ **Config** \times **Config** for our simple language of arithmetic expressions, and used its transitive and reflexive closure \longrightarrow^* to describe the execution of multiple steps of evaluation. In particular, if $\langle e, \sigma \rangle$ is some start configuration, and $\langle n, \sigma' \rangle$ is a final configuration, the evaluation $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$ shows that by executing expression e starting with the store σ , we get the result n, and the final store σ' .

Large-step semantics is an alternative way to specify the operational semantics of a language. Large-step semantics directly give the final result.

We'll use the same configurations as before, but define a large step evaluation relation:

$$\Downarrow \subseteq Config \times FinalConfig$$

where

$$Config = Exp \times Store$$
 and Final Config = Int \times Store \subseteq Config.

We write $\langle e,\sigma\rangle \Downarrow \langle n,\sigma'\rangle$ to mean that $(\langle e,\sigma\rangle,\langle n,\sigma'\rangle) \in \Downarrow$. In other words, configuration $\langle e,\sigma\rangle$ evaluates in one big step directly to final configuration $\langle n,\sigma'\rangle$. In general, the big step semantics takes a configuration to an "answer". For our language of arithmetic expressions, "answers" are a subset of configurations, but this is not always true in general.

The large step semantics boils down to defining the relation \Downarrow . We use inference rules to inductively define the relation \Downarrow , similar to how we specified the small-step operational semantics \longrightarrow .

$$\text{Int}_{\text{Lrg}} \frac{}{-\langle n,\sigma\rangle \Downarrow \langle n,\sigma\rangle} \qquad \qquad \text{Var}_{\text{Lrg}} \frac{}{-\langle x,\sigma\rangle \Downarrow \langle n,\sigma\rangle} \text{ where } \sigma(x) = n$$

$$\mathsf{ADD}_{\mathsf{LRG}} \frac{\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle \qquad \langle e_2, \sigma'' \rangle \Downarrow \langle n_2, \sigma' \rangle}{\langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle} \text{ where } n \text{ is the sum of } n_1 \text{ and } n_2$$

$$\text{MUL}_{\text{LRG}} \frac{\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle \qquad \langle e_2, \sigma'' \rangle \Downarrow \langle n_2, \sigma' \rangle}{\langle e_1 \times e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle} \text{ where } n \text{ is the product of } n_1 \text{ and } n_2$$

$$\operatorname{Asg}_{\operatorname{LRG}} \frac{\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle \qquad \langle e_2, \sigma''[x \mapsto n_1] \rangle \Downarrow \langle n_2, \sigma' \rangle}{\langle x := e_1; e_2, \sigma \rangle \Downarrow \langle n_2, \sigma' \rangle}$$

To see how we use these rules, here is a proof tree that shows that $\langle \text{foo} := 3; \text{foo} \times \text{bar}, \sigma \rangle \Downarrow \langle 21, \sigma' \rangle$ for a store σ such that $\sigma(\text{bar}) = 7$, and $\sigma' = \sigma[\text{foo} \mapsto 3]$.

Lecture 4 Large-step semantics

$$Asg_{LRG} = \frac{I_{NT_{LRG}} \frac{V_{AR_{LRG}} \frac{V_{AR_{LRG}} \sqrt{\langle foo,\sigma'\rangle \Downarrow \langle 3,\sigma'\rangle}}{\langle foo \times bar,\sigma'\rangle \Downarrow \langle 21,\sigma'\rangle}}{\langle foo \times bar,\sigma'\rangle \Downarrow \langle 21,\sigma'\rangle}}{\langle foo \times bar,\sigma'\rangle \Downarrow \langle 21,\sigma'\rangle}$$

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

2 Equivalence of semantics

So far, we have specified the semantics of our language of arithmetic expressions in two different ways: small-step operational semantics and large-step operational semantics. Are they expressing the same meaning of arithmetic expressions? Can we show that they express the same thing?

Theorem (Equivalence of semantics). For all expressions e, stores σ and σ' , and integers n, we have:

$$\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \iff \langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle.$$

Proof sketch.

 \bullet \Longrightarrow . We proceed by structural induction on expressions e. The property we will prove by induction is:

$$P(e) = \forall \sigma, \sigma' \in \mathbf{Store}., \forall n \in \mathbf{Int}. \langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$

We have to consider each of the possible axioms and inference rules for constructing an expression.

- Case $e \equiv x$.

Here, we are considering the case where the expression e is equal to some variable x. Assume that for some σ , σ' , and n we have $\langle x,\sigma\rangle \Downarrow \langle n,\sigma'\rangle$. That means that there is some derivation using the axioms and inference rules of the large-step operational semantics, whose conclusion is $\langle x,\sigma\rangle \Downarrow \langle n,\sigma'\rangle$. There is only one rule whose conclusion could look like this, the rule $\operatorname{Var}_{\operatorname{Lrg}}$. That rule requires that $n=\sigma(x)$, and that $\sigma'=\sigma$.

(This reasoning is an example of *inversion*: using the inference rules in reverse. That is, we know that some conclusion holds— $\langle x, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$ —and we examine the inference rules to determine which rule must have been used in the derivation, and thus which premises must be true, and which side conditions satisfied.)

Since $n = \sigma(x)$ we know that $\langle x, \sigma \rangle \longrightarrow \langle n, \sigma \rangle$ also holds, by using the small-step axiom VAR. So we can conclude that $\langle x, \sigma \rangle \longrightarrow^* \langle n, \sigma \rangle$ holds, which is what we needed to show.

- Case $e \equiv n$.

Here, we consider the case where expression e is equal to some integer n. Assume that for some σ , σ' , and n' we have $\langle n, \sigma \rangle \Downarrow \langle n', \sigma' \rangle$. Like the case above, by inversion, we know that the rule Int_{Lrg} was used to conclude that $\langle n, \sigma \rangle \Downarrow \langle n', \sigma' \rangle$, and so n' = n and $\sigma' = \sigma$.

So we need to show that $\langle n, \sigma \rangle \longrightarrow^* \langle n, \sigma \rangle$. But this holds trivially because of reflexivity of \longrightarrow^* .

- Case $e \equiv e_1 + e_2$.

This is an inductive case. Expressions e_1 and e_2 are subexpressions of e, and so we can assume that $P(e_1)$ and $P(e_2)$ hold. We need to show that P(e) holds. Let's write out $P(e_1)$, $P(e_2)$, and P(e) explicitly.

$$P(e_1) = \forall n, \sigma, \sigma' : \langle e_1, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e_1, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$

$$P(e_2) = \forall n, \sigma, \sigma' : \langle e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$

$$P(e) = \forall n, \sigma, \sigma' : \langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$

Assume that for some σ, σ' and n we have $\langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. We now need to show that $\langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$.

We assumed that $\langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. Let's use inversion again: there is some derivation whose conclusion is $\langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. By looking at the large-step semantic rules, we see that only one rule could possible have a conclusion of this form: the rule ADD_{LRG} . So that means that the last rule use in the derivation was ADD_{LRG} . But in order to use the rule ADD_{LRG} , it must be the case that $\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle$ and $\langle e_2, \sigma'' \rangle \Downarrow \langle n_2, \sigma' \rangle$ hold for some n_1 and n_2 such that $n = n_1 + n_2$ (i.e., there is a derivation whose conclusion is $\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle$ and a derivation whose conclusion is $\langle e_2, \sigma'' \rangle \Downarrow \langle n_2, \sigma' \rangle$).

Using the inductive hypothesis $P(e_1)$, since $\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle$, we must have $\langle e_1, \sigma \rangle \longrightarrow^* \langle n_1, \sigma'' \rangle$. Similarly, by $P(e_2)$, we have $\langle e_2, \sigma'' \rangle \longrightarrow^* \langle n_2, \sigma \rangle$. By Lemma 1 below, we have

$$\langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n_1 + e_2, \sigma'' \rangle$$

and by another application of Lemma 1 we have

$$\langle n_1 + e_2, \sigma'' \rangle \longrightarrow^* \langle n_1 + n_2, \sigma' \rangle$$

and by the rule ADD we have

$$\langle n_1 + n_2, \sigma' \rangle \longrightarrow \langle n, \sigma' \rangle.$$

Thus, we have $\langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$, which proves this case.

- Case $e \equiv e_1 \times e_2$. Similar to the case $e = e_1 + e_2$ above.
- Case $e \equiv x := e_1; e_2$. Omitted. Try it as an exercise.
- \Leftarrow . We proceed by mathematical induction on the number of steps $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$.
 - **Base case.** If $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$ in zero steps, then we must have $e \equiv n$ and $\sigma' = \sigma$. Then, $\langle n, \sigma \rangle \Downarrow \langle n, \sigma \rangle$ by the large-step operational semantics rule INT_{LRG}.
 - **Inductive case.** Assume that $\langle e, \sigma \rangle \longrightarrow \langle e'', \sigma'' \rangle \longrightarrow^* \langle n, \sigma' \rangle$, and that (the inductive hypothesis) $\langle e'', \sigma'' \rangle \Downarrow \langle n, \sigma' \rangle$. That is, $\langle e'', \sigma'' \rangle \longrightarrow^* \langle n, \sigma' \rangle$ takes m steps, and we assume that the property holds for it $(\langle e'', \sigma'' \rangle \Downarrow \langle n, \sigma' \rangle)$, and we are considering $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$, which takes m+1 steps. We need to show that $\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. This follows immediately from Lemma 2 below.

Lemma 1. If $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$ then for all n_1, e_2 the following hold.

- $\langle e + e_2, \sigma \rangle \longrightarrow^* \langle n + e_2, \sigma' \rangle$
- $\langle e \times e_2, \sigma \rangle \longrightarrow^* \langle n \times e_2, \sigma' \rangle$
- $\langle n_1 + e, \sigma \rangle \longrightarrow^* \langle n_1 + n, \sigma' \rangle$
- $\langle n_1 \times e, \sigma \rangle \longrightarrow^* \langle n_1 \times n, \sigma' \rangle$

Proof. By (mathematical) induction on the number of evaluation steps in \longrightarrow^* .

Lemma 2. For all e, e', σ , and $n, if \langle e, \sigma \rangle \longrightarrow \langle e', \sigma'' \rangle$ and $\langle e', \sigma'' \rangle \Downarrow \langle n, \sigma' \rangle$, then $\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$.