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Today, we will learn about

I Lambda calculus encodings

I Church numerals

I Recursion and fixed point-combinators
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Lambda calculus encodings

I The pure lambda calculus contains only
functions as values.

I It is not exactly easy to write large or
interesting programs in the pure lambda
calculus.

I We can however encode objects, such as
booleans, and integers.
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Booleans
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Booleans

We want to define functions TRUE , FALSE , AND,
IF , and other operators such that the expected
behavior holds, for example:

AND TRUE FALSE = FALSE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2
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TRUE and FALSE

TRUE , λx . λy . x

FALSE , λx . λy . y
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IF

The function IF should behave like

λb. λt. λf . if b = TRUE then t else f .

The definitions for TRUE and FALSE make this
very easy.

IF , λb. λt. λf . b t f
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NOT, AND, OR

NOT , λb. b FALSE TRUE

AND , λb1. λb2. b1 b2 FALSE

OR , λb1. λb2. b1 TRUE b2
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Church numerals

Church numerals encode the natural number n as a
function that takes f and x , and applies f to x n
times.

0 , λf . λx . x

1 = λf . λx . f x

2 = λf . λx . f (f x)

SUCC , λn. λf . λx . f (n f x)
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Addition

Let us define addition now. Intuitively, the natural
number n1 + n2 is the result of apply the successor
function n1 times to n2.

ADD , λn1. λn2. n1 SUCC n2
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Recursion and the fixed-point combinators
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Recursion and the fixed-point combinators

We would like to define a function that computes
factorials.

FACT , λn. if n = 0 then 1 else n×FACT (n− 1)
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Recursion and the fixed-point combinators

FACT , λn. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))
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Recursion and the fixed-point combinators

Note that this is not a definition, it’s a recursive
equation.
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Recursion Removal Trick

I We can perform a “trick” to define a function
FACT that satisfies the recursive equation
above.

I First, let’s define a new function FACT ′ that
looks like FACT , but takes an additional
argument f .

I We assume that the function f will be
instantiated with an actual parameter of...
FACT ′.
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FACT ′ , λf . λn. if n = 0 then 1 else n × (f f (n − 1))
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Now we can define the factorial function FACT in
terms of FACT ′.

FACT , FACT ′ FACT ′
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Let’s try evaluating FACT 3 = m.

m = (FACT ′ FACT ′) 3

= ((λf . λn. if n = 0 then 1 else n × (f f (n − 1))) FACT ′) 3

−→ (λn. if n = 0 then 1 else n × (FACT ′ FACT ′ (n − 1))) 3

−→ if 3 = 0 then 1 else 3× (FACT ′ FACT ′ (3− 1))

−→ 3× (FACT ′ FACT ′ (3− 1))

−→ . . .

−→ 3× 2× 1× 1

−→∗ 6
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So we now have a technique for writing a recursive
function f : write a function f ′ that explicitly takes a
copy of itself as an argument, and then define

f , f ′ f ′.

19 / 33



Fixed point combinators

Alternatively, we can express a recursive function as
the fixed point of some other, higher-order function,
and then find that fixed point.
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Fixed point combinator

Thus FACT is a fixed point of the following
function.

G , λf . λn. if n = 0 then 1 else n × (f (n − 1))
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Fixed point combinator

Recall that if g if a fixed point of G , then we have
G g = g .
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Fixed point combinator

I A combinator is simply a closed lambda term

I Our functions SUCC and ADD are examples of
combinators.

I It is possible to define programs using only
combinators, thus avoiding the use of variables
completely.
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The Y combinator

The Y combinator is defined as

Y , λf . (λx . f (x x)) (λx . f (x x)).

It was discovered by Haskell Curry, and is one of the
simplest fixed-point combinators.
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The fixed point of the higher order function G is
equal to G (G (G (G (G . . . )))). Intuitively, the Y
combinator unrolls this equality, as needed.
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Let’s see it in action, on our function G , where

G = λf . λn. if n = 0 then 1 else n × (f (n − 1))

and the factorial function is the fixed point of G .
(We will use CBN semantics.)
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FACT = Y G

= (λf . (λx . f (x x)) (λx . f (x x))) G

−→ (λx .G (x x)) (λx .G (x x))

−→ G ((λx .G (x x)) (λx .G (x x)))

=β G (FACT )

= (λf . λn. if n = 0 then 1 else n × (f (n − 1))) FACT

−→ λn. if n = 0 then 1 else n × (FACT (n − 1))
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Note that the Y combinator works under CBN
semantics, but not CBV. (What happens when we
evaluate Y G under CBV?)
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There is a variant of the Y combinator, Z , that
works under CBV semantics. It is defined as

Z , λf . (λx . f (λy . x x y)) (λx . f (λy . x x y)).
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The Turing fixed-point combinator

The Turing fixed-point combinator, denoted Θ, was
discovered by Alan Turing.
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The Turing fixed-point combinator

Suppose we have a higher order function f , and
want the fixed point of f . We know that Θ f is a
fixed point of f , so we have

Θ f = f (Θ f ).
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This means, that we can write the following
recursive equation for Θ.

Θ = λf . f (Θ f )

Now we can use the recursion removal trick we
described earlier! Let’s define
Θ′ = λt. λf . f (t t f ), and define

Θ , Θ′ Θ′

= (λt. λf . f (t t f )) (λt. λf . f (t t f ))
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Let’s try out the Turing combinator on our higher
order function G that we used to define FACT .
Again, we will use CBN semantics.

FACT = Θ G

= ((λt. λf . f (t t f )) (λt. λf . f (t t f ))) G

−→ (λf . f ((λt. λf . f (t t f )) (λt. λf . f (t t f )) f )) G

−→ G ((λt. λf . f (t t f )) (λt. λf . f (t t f )) G )

= G (Θ G )

= (λf . λn. if n = 0 then 1 else n × (f (n − 1))) (Θ G )

−→ λn. if n = 0 then 1 else n × ((Θ G ) (n − 1))

= λn. if n = 0 then 1 else n × (FACT (n − 1))
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