Encodings
CS 152 (Spring 2020)

Harvard University

Tuesday, February 25, 2020

1/33



Today, we will learn about

» Lambda calculus encodings
» Church numerals

» Recursion and fixed point-combinators

2/33



Lambda calculus encodings

» The pure lambda calculus contains only
functions as values.

» |t is not exactly easy to write large or
interesting programs in the pure lambda
calculus.

» We can however encode objects, such as
booleans, and integers.

3/33



Booleans

4/33



Booleans

We want to define functions TRUE, FALSE, AND,
IF, and other operators such that the expected
behavior holds, for example:

AND TRUE FALSE = FALSE
IF TRUE e & = ¢
IF FALSE €, & = &

5/33



TRUE and FALSE

TRUE 2 \x. \y.x
FALSE 2 X\x. \y.y



The function /IF should behave like
Ab. \t. \f.if b= TRUE then t else f.

The definitions for TRUE and FALSE make this
very easy.

IF 2 Ab.Xt.\f.btf

7/33



NOT, AND, OR

NOT £ \b.b FALSE TRUE
AND £ \b;. \b,. by b, FALSE
OR £ \b;. \b,. by TRUE b,

8/33



Church numerals

Church numerals encode the natural number n as a
function that takes f and x, and applies f to x n
times.

02 \f.\x.x

I=M.)x.fx
2=M.Mx.f (f x)

SUCC 2 An. M. \x. f (n f x)

9/33



Addition

Let us define addition now. Intuitively, the natural
number n; + no is the result of apply the successor
function n; times to no.

ADD £ \ny. \ny,. n; SUCC nj,

10/33



Recursion and the fixed-point combinators

11/33



Recursion and the fixed-point combinators

We would like to define a function that computes
factorials.

FACT 2 An.if n =0 then 1 else n x FACT (n—1)

12/33



Recursion and the fixed-point combinators

FACT 2 An.IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

13/33



Recursion and the fixed-point combinators

Note that this is not a definition, it's a recursive
equation.

14 /33



Recursion Removal Trick

» We can perform a “trick” to define a function
FACT that satisfies the recursive equation
above.

» First, let's define a new function FACT' that
looks like FACT, but takes an additional
argument f.

» We assume that the function f will be

instantiated with an actual parameter of...
FACT'.

15/33



FACT' £ Xf.\n.if n=0then lelse n x (f f (n— 1))

16/33



Now we can define the factorial function FACT in
terms of FACT'.

FACT = FACT' FACT'

17/33



Let's try evaluating FACT 3 = m.

(FACT' FACT') 3

= ((Af.An.if n=0then lelse n x (f f (n—1))) FACT') 3
— (An.if n=0then 1 else n x (FACT' FACT' (n—1))) 3
— if 3=0then 1 else 3 x (FACT' FACT' (3-1))

3 x (FACT' FACT' (3 - 1))

— 3x2x1xl1

—" 6

m

18/33



So we now have a technique for writing a recursive
function f: write a function f’ that explicitly takes a
copy of itself as an argument, and then define

f2ff.

19/33



Fixed point combinators

Alternatively, we can express a recursive function as
the fixed point of some other, higher-order function,
and then find that fixed point.

20/33



Fixed point combinator

Thus FACT is a fixed point of the following
function.

G 2 M. \n.if n=0then 1 else n x (f (n— 1))

21/33



Fixed point combinator

Recall that if g if a fixed point of G, then we have
Gg=g.

22/33



Fixed point combinator

» A combinator is simply a closed lambda term

» Our functions SUCC and ADD are examples of
combinators.

» It is possible to define programs using only
combinators, thus avoiding the use of variables
completely.

23/33



The Y combinator

The Y combinator is defined as
Y £ . (M. f (x x)) (M. f (x x)).

It was discovered by Haskell Curry, and is one of the
simplest fixed-point combinators.

24/33



The fixed point of the higher order function G is
equal to G (G (G (G (G ...)))). Intuitively, the Y
combinator unrolls this equality, as needed.

25/33



Let's see it in action, on our function G, where
G=A.\n.if n=0then1lelse nx (f (n—1))

and the factorial function is the fixed point of G.
(We will use CBN semantics.)

26/33



FACT =Y G
= (M. (Ax. f (x x)) (Ax.f (x x))) G
— (M. G (x x)) (Mx. G (x x))
— G ((Mx. G (x x)) (Ax. G (x x)))
=5 G (FACT)
= (Af.An.if n=0then lelse n x (f (n—1))) FACT
— An.if n=0then 1 else n x (FACT (n—1))

27/33



Note that the Y combinator works under CBN

semantics, but not CBV. (What happens when we
evaluate Y G under CBV?)

28/33



There is a variant of the Y combinator, Z, that
works under CBV semantics. It is defined as

ZEXM.(Ox.f(Ay.xxy)) (Ax.f (Ay.x x y)).

29/33



The Turing fixed-point combinator

The Turing fixed-point combinator, denoted ©, was
discovered by Alan Turing.

30/33



The Turing fixed-point combinator

Suppose we have a higher order function f, and
want the fixed point of f. We know that © f is a
fixed point of f, so we have

of=f(Of)

31/33



This means, that we can write the following
recursive equation for ©.

© = \f.f (O f)

Now we can use the recursion removal trick we
described earlier! Let's define
© = At. Mf.f (t t f), and define

CENCC)
=(At. M. fF(ttf)) (At AF.f(ttf))

32/33



Let's try out the Turing combinator on our higher
order function G that we used to define FACT.
Again, we will use CBN semantics.

FACT =0 G
= (M F(ttf)) (M N.F(ttf))G
— (M. F (At A F(tt ) (M AF.f(ttf)F)G
— G (Mt M. f(ttf)) (M. AF.f(ttF)) G)
=G (0 G)
= (M. An.if n=0then lelse n x (f (n—1))) (© G)
— An.if n=0then lelse n x ((© G) (n—1))
= An.if n=0then 1 else n x (FACT (n—1))

33/33



