Simply-typed lambda calculus
CS 152 (Spring 2020)

Harvard University

Thursday, March 5, 2020

1/51

Today, we will learn about

» Simply-typed lambda calculus
» Type soundness

» Normalization

2/51

Types

» A type is a collection of computational entities
that share some common property.

» For example, the type int represents all
expressions that evaluate to an integer, and the
type int — int represents all functions from
integers to integers.

» The Pascal subrange type [1..100] represents
all integers between 1 and 100.

3/51

Types

Type systems are a lightweight formal method for
reasoning about behavior of a program.

4/51

Uses of type systems

» Naming and organizing useful concepts

» Providing information (to the compiler or
programmer) about data manipulated by a
program

» Ensuring that the run-time behavior of
programs meet certain criteria.

5/51

Simply-typed lambda calculus

We will consider a type system for the lambda
calculus that ensures that values are used correctly.

For example, that a program never tries to add an
integer to a function.

The resulting language (lambda calculus plus the
type system) is called the simply-typed lambda
calculus.

6/51

Simply-typed lambda calculus

In the simply-typed lambda calculus, we explicitly
state what the type of the argument is.

That is, in an abstraction Ax: 7. e, the 7 is the
expected type of the argument.

7/51

Simply-typed lambda calculus: Syntax

We will include integer literals n, addition e; + e,
and the unit value (). The unit value is the only
value of type unit.

8/51

Simply-typed lambda calculus: Syntax

expressions e=x | x:T.e|e e |n|e+e ()
values vi=Ax:T.e|n|()
types To=int | unit | — 7

9/51

Simply-typed lambda calculus: CBV small
step operational semantics

The operational semantics of the simply-typed
lambda calculus are the same as the untyped
lambda calculus.

10/51

Simply-typed lambda calculus: CBV small
step operational semantics
E:=[]|Ee|vE|E+e|v+E

e — ¢
Ele] — E[€']

CONTEXT

B-REDUCTION

(Ax.e) v — e{v/x}

ADD n=n;+ n
n+n—n

11/51

The typing relation

The presence of types does not alter the evaluation
of an expression at all. So what use are types?

12/51

The typing relation

We will use types to restrict what expressions we
will evaluate. Specifically, the type system for the
simply-typed lambda calculus will ensure that any
well-typed program will not get stuck.

13/51

The typing relation

A term e is stuck if e is not a value and there is no
term €’ such that e — €’.

14 /51

The typing relation

42 + \x. x

15/51

The typing relation

() 47

16 /51

Typing judgment

» We introduce a relation (or judgment) over
typing contexts (or type environments) T,
expressions e, and types T.

» The judgment

[Fe:T

is read as “e has type 7 in context [".

17/51

» A typing context is a sequence of variables and
their types.

» In the typing judgment [- e: 7, we will ensure
that if x is a free variable of e, then
associates x with a type.

18/51

Typing judgment

» We can view a typing context as a partial
function from variables to types.

» We will write ', x : 7 or ['[x — 7] to indicate
the typing context that extends [by
associating variable x with with type 7.

» We write - e: 7 to mean that the closed term
e has type 7 under the empty context.

19/51

Well-typed expression

» Given a typing environment [and expression e,
if there is some 7 such that I - e: 7, we say
that e is well-typed under context I

» If [is the empty context, we say e is
well-typed.

20/51

Inductive definition of [- e: 7T

[Fe:int THe:int

T-INT ————— T-ADD _
[+ n:int Fe + e:int
T-UNIT—
I ():unit
MNx:tke: 7
T-VAR——I(x)=7 T-ABs T e
MNe=x:7 N=M:T.e:T— 7

. / .
T App lFe:7T—7 The:T

N6 e:7

21/51

Inductive definition of [- e: 7T

An integer n always has type int. Expression e; + e
has type int if both e; and e, have type int. The
unit value () always has type unit.

22/51

Inductive definition of [- e: 7T

» Variable x has whatever type the context
associates with x.

» The abstraction Ax:7. e has the function type
7 — 7' if the function body e has type 7/
under the assumption that x has type 7.

» An application e; e has type 7’ provided that
e; is a function of type 7 — 7/, and & is an
argument of type 7.

23/51

Type-checking an expression

Consider the program (Ax:int. x 4 40) 2.

24 /51

Type-checking an expression

The following is a proof that (Ax:int.x + 40) 2 is
well-typed.

25/51

Type-checking an expression

T-VArR T-INT

x:int - x:int x:int - 40:int
T-App Jint - x + 40:int
T-ABs .x4m x - '"‘_ T-INT —————
= Ax:int. x 4+ 40:int — int = 2:int

T-Aprp

F (Ax:int. x 4 40) 2:int

26 /51

Theorem (Type soundness)

If - e:7 and e —* €’ then either €’ is a value, or
there exists e” such that ¢/ — €”.

27 /51

Theorem (Type soundness)

To prove this, we use two lemmas: preservation and
progress.

28/51

Theorem (Type soundness)

Intuitively, preservation says that if an expression e
is well-typed, and e can take a step to €, then ¢’ is
well-typed. That is, evaluation preserves
well-typedness.

29/51

Theorem (Type soundness)

Progress says that if an expression e is well-typed,
then either e is a value, or there is an €’ such that e
can take a step to €. That is, well-typedness means
that the expression cannot get stuck.

30/51

Together, these two lemmas suffice to prove type
soundness.

31/51

Lemma (Preservation)

If -e:7and e — €’ then - €': 7.

32/51

Ple — €') =Vr7.if -e:7 then Fé€':7

To prove this, we proceed by induction on e — ¢’.
That is, we will prove for all e and €’ such that
e — €, that P(e — €’) holds, where

P(e — &) =Vr.if -e:7 then F¢':T.

33/51

Ple — €') =Vr7.if -e:7 then Fé€':7

Consider each of the inference rules for the small
step relation.

34/51

Ple — €') =Vr7.if -e:7 then Fé€':7

ADD

Assume - e: 7.

Here e = ny + ny, and € = n where n = n; + no,
and 7 = int. By the typing rule T-INT, we have
- €':int as required.

35/51

Ple — €') =Vr7.if -e:7 then Fé€':7

[-REDUCTION

Assume - e:T.

Here, e = (Ax:7".e1) v and € = e {v/x}. Since e
is well-typed, we have derivations showing
FAx:7'.ei:7" — 7 and F v:7'. There is only one
typing rule for abstractions, T-ABS, from which we
know x:7 I e, :7. By the substitution lemma (see
below), we have - e;{v/x}:7 as required.

36/51

Ple — €') =Vr7.if -e:7 then Fé€':7

CONTEXT

Assume - e:T.

Here, we have some context E such that e = E[e]
and e’ = E[ey] for some e; and e, such that

e — €. The inductive hypothesis is that

P(e1 — 62).

Since e is well-typed, we can show by induction on
the structure of E that - e;: 7y for some 7. By the
inductive hypothesis, we thus have - e;:7y. By the
context lemma (see below) we have - E[€']:7 as
required.

37/51

If He:7and e — €' then - €': 7

This proves the lemma.

38/51

Additional lemmas we used in the proof above.
Lemma (Substitution)
If x:7'te:T andt- v:7' then - e{v/x}:T.

Lemma (Context)

If = Eleo]: 7 and - eq: 7" and & ey : 7' then
H E[el]ZT.

39/51

Lemma (Progress)

If - e:7 then either e is a value or there exists an ¢’
such that e — €.

40/51

If - e:7 then either e is a value or there
exists an e’ such that e — €'.

We proceed by induction on the derivation of
F e:7. That is, we will show for all e and 7 such
that - e:7, we have P(F e:7), where

P(F e:7) = either e is a value or d¢’ such that e — ¢’

41/51

If - e:7 then either e is a value or there
exists an e’ such that e — €'.

T-VAR This case is impossible, since a variable is
not well-typed in the empty environment.

42/51

If - e:7 then either e is a value or there
exists an €’ such that e — ¢€’.

T-UnriT, T-INT, T-ABS
Trivial, since e must be a value.

43/51

If - e:7 then either e is a value or there
exists an e’ such that e — €'.

T-ADD

Here e = 1 + e, and I ¢;:int for i € {1,2}. By the
inductive hypothesis, for i € {1,2}, either ¢; is a
value or there is an €/ such that ¢, — €.

If e; is not a value, then by CONTEXT,

e1+ e — e + e. If e is a value and e is not a
value, then by CONTEXT, e; + e — e; + €. If
and e, are values, then, it must be the case that
they are both integer literals, and so, by ADD, we
have e; + e — n where n equals e; plus e,.

44 /51

If - e:7 then either e is a value or there
exists an e’ such that e — €'.

T-App

Here e=e; & and Fe1:7 — 7 and - e:7'. By
the inductive hypothesis, for i € {1, 2}, either ¢; is a
value or there is an e/ such that ¢, — €.

If e; is not a value, then by CONTEXT,

e1 & —> €] e. If e is a value and e, is not a
value, then by CONTEXT, e; & — ¢; €. If e; and
e, are values, then, it must be the case that e is an
abstraction \x:7’. €/, and so, by S-REDUCTION, we
have e; & — €'{ey/x}.

45 /51

If - e:7 then either e is a value or there
exists an €’ such that e — ¢€’.

This proves the Progress lemma.

46 /51

Expressive power of the simply-typed
lambda calculus

Are there programs that do not get stuck that are
not well-typed?

47/51

Expressive power of the simply-typed
lambda calculus

Unfortunately, the answer is yes.

Consider the identity function Ax. x.

We must provide a type for the argument. If we
specify Ax:int. x, then the program (Ax:int.x) ()
is not well-typed, even though it does not get stuck.

48 /51

Expressive power of the simply-typed
lambda calculus: Recursion

We can no longer write recursive functions.
Consider 2 = (Ax. x x) (Ax.x x). Let’s suppose
that the type of Ax.x x is 7 — 7/. Then 7 must be
equal to 7 — 7’. There is no such type for which
this equality holds.

49/51

Theorem (Normalization)

If = e: T then there exists a value v such that
e —* v.

50 /51

This is known as normalization since it means that
given any well-typed expression, we can reduce it to
a normal form, which, in our case, is a value.

51/51

