
Polymorphism
CS 152 (Spring 2020)

Harvard University

Tuesday, March 24, 2020

1 / 24

Today, we will learn about

I Parametric Polymorphism

I Subtyping

2 / 24

Polymorphism

I Subtype polymorphism

I Ad-hoc polymorphism

I Parametric polymorphism

3 / 24

Parametric Polymorphism in STLC?

doubleInt , λf : int→ int. λx : int. f (f x)

doubleBool , λf :bool→ bool. λx :bool. f (f x)

doubleFn , λf : (int→ int)→ (int→ int).

λx : int→ int. f (f x)
...

4 / 24

Abstraction Principle

Each significant piece of functionality in a
program should be implemented in just one
place in the source code. When similar
functions are carried out by distinct pieces
of code, it is generally beneficial to com-
bine them into one by abstracting out the
varying parts.

5 / 24

Type Abstraction in System F

A type abstraction is a new expression, written
ΛX . e, where Λ is the upper-case form of the Greek
letter lambda, and X is a type variable. We also
introduce a new form of application, called type
application, or instantiation, written e1 [τ].

6 / 24

Syntax of System F

e ::= n | x | λx :τ. e | e1 e2 | ΛX . e | e [τ]

v ::= n | λx :τ. e | ΛX . e

7 / 24

Operational Semantics of System F

E ::= [·] | E e | v E | E [τ]

e −→ e ′

E [e] −→ E [e ′]

β-reduction
(λx :τ. e) v −→ e{v/x}

Type-reduction
(ΛX . e) [τ] −→ e{τ/X}

8 / 24

Example (Polymorphic Identity Function)

ID , ΛX . λx :X . x

(ΛX . λx :X . x) [int] −→ λx : int. x

(ΛX . λx :X . x) [int→ int] −→ λx : int→ int. x

9 / 24

Type System of System F (Syntax)

τ ::= int | τ1 → τ2 | X | ∀X . τ

10 / 24

Type System of System F (Well-Typed)

∆, Γ ` n : int

∆ ` τ ok

∆, Γ ` x :τ
Γ(x) = τ

∆, Γ, x :τ ` e :τ ′ ∆ ` τ ok

∆, Γ ` λx :τ. e :τ → τ ′

∆, Γ ` e1 :τ → τ ′ ∆, Γ ` e2 :τ

∆, Γ ` e1 e2 :τ ′

∆ ∪ {X}, Γ ` e :τ

∆, Γ ` ΛX . e :∀X . τ
∆, Γ ` e :∀X . τ ′ ∆ ` τ ok

∆, Γ ` e [τ] :τ ′{τ/X}

11 / 24

Type System of System F (Well-Formed)

∆ ` X ok
X ∈ ∆

∆ ` int ok

∆ ` τ1 ok ∆ ` τ2 ok

∆ ` τ1 → τ2 ok

∆ ∪ {X} ` τ ok

∆ ` ∀X . τ ok

12 / 24

Examples

double , ΛX . λf :X → X . λx :X . f (f x).

∀X . (X → X)→ X → X

double [int] (λn : int. n + 1) 7

−→ (λf : int→ int. λx : int. f (f x)) (λn : int. n + 1) 7

−→∗ 9

13 / 24

Example: Self-Application

` λx :∀X . X → X . x [∀X . X → X] x

: (∀X . X → X)→ (∀X . X → X)

14 / 24

Records (Syntax)

l ∈ L
e ::= · · · | {l1 = e1, . . . , ln = en} | e.l
v ::= · · · | {l1 = v1, . . . , ln = vn}
τ ::= · · · | {l1 :τ1, . . . , ln :τn}

15 / 24

Records (Operational Semantics)

E ::= . . .

| {l1 = v1, . . . , li = E , . . . , ln = en}
| E .l

{l1 = v1, . . . , ln = vn}.li −→ vi

16 / 24

Records (Typing)

∀i ∈ 1..n. Γ ` ei :τi

Γ ` {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}
Γ ` e :{l1 :τ1, . . . , ln :τn}

Γ ` e.li :τi

17 / 24

Subtyping (Principle)

The principle of subtyping is as follows. If
τ1 is a subtype of τ2 (written τ1 ≤ τ2, and
also sometimes as τ1≤:τ2), then a program
can use a value of type τ1 whenever it would
use a value of type τ2. If τ1 ≤ τ2, then τ1 is
sometimes referred to as the subtype, and
τ2 as the supertype.

18 / 24

Principle of Subtyping in Typing

Subsumption
Γ ` e :τ τ ≤ τ ′

Γ ` e :τ ′

19 / 24

Subtyping Properties

τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

20 / 24

Subtyping of Records

∀i ∈ 1..n. ∃j ∈ 1..m. l ′i = lj ∧ τj ≤ τ ′i
{l1 :τ1, . . . , lm :τm} ≤ {l ′1 :τ ′1, . . . , l

′
n :τ ′n}

21 / 24

Subtyping of Products

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 × τ2 ≤ τ ′1 × τ ′2

22 / 24

Subtyping of Functions

τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2

23 / 24

Subtyping of Locations

τ ≤ τ ′ τ ′ ≤ τ

τ ref ≤ τ ′ ref

24 / 24

