Algebraic Structores
CS 152 (Spring 2020)

Harvard University

Tuesday, April 7, 2020

1/18

Announcements

HW2: Grades available in Gradescope

HWa3: grading in progress...

HW4: due Apr 14

HWS5: will be released Apr 14, due May 1, and
combine previous HW5 and HW6.

» Survey: by the end of Wednesday Apr 8
» https://forms.gle/FM7mb9n4Gbze14Js6

vvyyvYyy

2/18

https://forms.gle/FM7mb9n4Gbze14Js6

Today, we will learn about

» Type constructors
» Lists, Options

» Alegebraic structures

» Monoids
» Functors
» Monads

» Alegebraic structures in Haskell

3/18

Type Constructors

> A type constructor creates new types from
existing types

> E.g., product types, sum types, reference types,
function types, ...

4/18

Lists

» Assume CBV A-calc with booleans, fixpoint
operator ux:7. e

Expressions e :=---][]
| &1 1 e | isempty? e | head e
| tail e

Values vi=-|[]|wv = w

Types To=---| 7 list

Eval contexts E:=---|E = e|v = E

| isempty? E | head E | tail E

5/18

List inference rules

isempty? [] — true isempty? v; 1 v, — false

head vi = v» — g tail vi @ v — »y

He:T [e:7 list
[=[]:7 list e e list

[e:7 list [e:7 list [+ e:7 list
[+ isempty? e:bool [+ head e: 7 [tail e:7 list

append £ uf 7 list — 7 list. A\a: 7 list. \b: 7 list.
if isempty? a then b else (head a) :: (f (tail a) b)

6/18

Options

Expressions e - | none | some e | case e of &, | €
Values v = --- | none | some v

Types T :=---| T option

Eval contexts E - | some E | case Eof &) | &3

7/18

Monoids

8/18

Monoid examples

9/18

Functors

10/18

Functor examples

11/18

Monad

12/18

Option monad

13/18

Algebraic structures in Haskell

» https://www.haskell.org/
» Pure functional language

» Call-by-need evaluation (aka lazy evaluation)
» Type classes: mechanism for ad hoc
polymorphism
» Declares common functions that all types within
class have

> We will use to express algebraic structures in
Haskell

14/18

Monoid

15/18

Monad

16/18

Using Monads

17/18

Why Monads?

vvyyvyy

vy

Monads are very useful in Haskell
Haskell is pure: no side effects
But side effects useful!

Monadic types cleanly and clearly express
side effects computation may have

Monads force computation into sequence

Monads as type classes capture underlying
structure of computation

» Reusable readable code that works for any monad

18/18

