1 Induction

Let's inductively define a set of integers Quux with the following inference rules.

\[
\begin{array}{c}
\text{RULE1} & 8 \in \text{Quux} \\
\text{RULE2} & 5 \in \text{Quux} \\
\text{RULE3} & a \in \text{Quux}, b \in \text{Quux} \Rightarrow c = a + b + 1
\end{array}
\]

(a) Of the rules above (i.e., RULE1, RULE2, and RULE3), which are axioms and which are inductive rules?

Answer: The rules RULE1 and RULE2 are axioms: they have no premises. Rule RULE3 is an inductive rule: it has one or more premises.

(b) Give a derivation showing that 11 is in the set Quux.

Answer:

\[
\begin{array}{c}
\text{RULE3} & 5 \in \text{Quux} \\
\text{RULE2} & 5 \in \text{Quux} \\
\text{RULE3} & 11 \in \text{Quux}
\end{array}
\]

(c) Give a derivation showing that 20 is in the set Quux.

Answer:

\[
\begin{array}{c}
\text{RULE3} & 5 \in \text{Quux} \\
\text{RULE2} & 5 \in \text{Quux} \\
\text{RULE3} & 11 \in \text{Quux} \\
\text{RULE1} & 8 \in \text{Quux} \\
\text{RULE2} & 5 \in \text{Quux} \\
\text{RULE3} & 20 \in \text{Quux}
\end{array}
\]

(d) Write down the inductive reasoning principle for Quux. That is, if you wanted to prove that for some property P, for all a ∈ Quux we have P(a), what would you need to show? (See Lecture 3 §2.2 and §2.3.)

Answer: For any property P,

If

- RULE1: P(8) holds.
- RULE2: P(5) holds.
Section and Practice Problems

- **RULE 3**: For all \(a \in Quux \) and all \(b \in Quux \), if \(P(a) \) and \(P(b) \) then \(P(c) \) where \(c = a + b + 1 \).

then

for all \(a \in Quux, P(a) \) holds.

(e) Prove that for all \(a \in Quux \), there exists \(i \in \mathbb{Z} \) such that \(a = 3 \times i - 1 \).

Make sure that you follow the Recipe for Inductive Proofs! See Lecture 3 §2.5. What set are you inducting on? What is the property you are trying to prove? Go through each case.

Answer: The property we will prove for all \(a \in Quux \) is \(P(a) = \exists i \in \mathbb{Z}. a = 3 \times i - 1 \). We proceed by induction on the derivation of \(a \in Quux \).

- **RULE 1**. Here, \(a = 8 \). Note that \(8 = 3 \times 3 - 1 \), and so \(P(a) \) holds, as required.
- **RULE 2**. Here, \(a = 5 \). Note that \(5 = 3 \times 2 - 1 \), and so \(P(a) \) holds, as required.
- **RULE 3**. Here, \(a = b + c + 1 \) where \(b \in Quux \) and \(c \in Quux \). Assume that \(P(b) \) and \(P(c) \). That is, there exists some \(i \) and \(j \) such that \(b = 3 \times i - 1 \) and \(c = 3 \times j - 1 \).

We have

\[
\begin{align*}
a &= b + c + 1 \\
&= (3 \times i - 1) + (3 \times j - 1) + 1 \\
&= 3 \times (i + j) - 1
\end{align*}
\]

So there exists an integer \(k \) (namely, \(k = i + j \)) such that \(a = 3 \times k - 1 \), and so \(P(a) \) holds, as required.

(f) Is 2 in the set Quux? If so, give a derivation proving it.

Answer: 2 is not in the set Quux. How would you go about proving that this is the case? (Hint: could you prove some property that holds true of all elements of Quux, and that property isn’t true of 2?) Turn page around for an answer... (Whoa, answers inside answers; it’s answers all the way down...)

Page 2 of ??

2 Small-step operational semantics

Consider the small-step operational semantics for the language of arithmetic expressions (Lecture 2). Let \(\sigma_0 \) be a store that maps all program variables to zero.

(a) Show a derivation that \(\langle 3 + (5 \times \text{bar}), \sigma_0 \rangle \rightarrow \langle 3 + (5 \times 0), \sigma_0 \rangle \).

Answer:

\[
\begin{align*}
\text{VAR} & \quad (\text{bar}, \sigma_0) \rightarrow (0, \sigma_0) \\
\text{RMUL} & \quad (5 \times \text{bar}, \sigma_0) \rightarrow (5 \times 0, \sigma_0) \\
\text{RADD} & \quad (3 + (5 \times \text{bar}), \sigma_0) \rightarrow (3 + (5 \times 0), \sigma_0)
\end{align*}
\]
(b) What is the sequence of configurations that \((\text{foo} := 5; (\text{foo} + 2) \times 7, \sigma_0) \) steps to? (You don’t need to show the derivations for each step, just show what configuration \((\text{foo} := 5; (\text{foo} + 2) \times 7, \sigma_0) \) steps to in one step, then two steps, then three steps, and so on, until you reach a final configuration.)

Answer:
\[
\begin{align*}
(\text{foo} &:= 5; (\text{foo} + 2) \times 7, \sigma_0) \\
\rightarrow &\ (\text{foo} + 2) \times 7, \sigma_0[\text{foo} \mapsto 5] \\
\rightarrow &\ (5 + 2) \times 7, \sigma_0[\text{foo} \mapsto 5] \\
\rightarrow &\ (7 \times 7, \sigma_0[\text{foo} \mapsto 5] \\
\rightarrow &\ (49, \sigma_0[\text{foo} \mapsto 5]
\end{align*}
\]

(c) Find an integer \(n \) and store \(\sigma' \) such that \((\langle 6 + (\text{foo} := (\text{bar} := 3; 5); 1 + \text{bar}) + \text{bar} \rangle \times \text{foo}, \sigma_0 \) \) steps to? (You don’t need to show the derivations for each step, just show what configuration \((\langle 6 + (\text{foo} := (\text{bar} := 3; 5); 1 + \text{bar}) + \text{bar} \rangle \times \text{foo}, \sigma_0 \) \) steps to in one step, then two steps, then three steps, and so on, until you reach a final configuration.)

Answer: Let’s step through the execution of the configuration, to find a final configuration.
\[
\begin{align*}
\langle (6 + (\text{foo} := (\text{bar} := 3; 5); 1 + \text{bar}) + \text{bar} \rangle \times \text{foo}, \sigma_0 \\
\rightarrow &\ \langle (6 + (\text{foo} := 5; 1 + \text{bar}) + \text{bar} \rangle \times \text{foo}, \sigma_0[\text{bar} \mapsto 3] \\
\rightarrow &\ \langle (6 + (1 + \text{bar}) + \text{bar} \rangle \times \text{foo}, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5] \\
\rightarrow &\ \langle (6 + (1 + 3)) + \text{bar} \rangle \times \text{foo}, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5] \\
\rightarrow &\ \langle (6 + 4) + \text{bar} \rangle \times \text{foo}, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5] \\
\rightarrow &\ \langle 10 + \text{bar} \rangle \times \text{foo}, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5] \\
\rightarrow &\ \langle 10 + 3 \rangle \times \text{foo}, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5] \\
\rightarrow &\ \langle 13 \times \text{foo}, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5] \\
\rightarrow &\ \langle 13 \times 5, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5] \\
\rightarrow &\ \langle 65, \sigma_0[\text{bar} \mapsto 3, \text{foo} \mapsto 5]
\end{align*}
\]

(d) Is the relation \(\rightarrow \) reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?

(For each of these questions, if the answer is “no”, what is a suitable counterexample? If any of the answers are “yes”, think about how you would prove it.)

Answer: The relation \(\rightarrow \) is not reflexive. A relation \(R \) is reflexive if for all \(x \) in the domain of \(R \) we have \(x \ R \ x \). Consider, for example, \(\langle 42, \sigma_0 \rangle \). It is not the case that \(\langle 42, \sigma_0 \rangle \rightarrow \langle 42, \sigma_0 \rangle \), and so \(\rightarrow \) is not reflexive.

The relation \(\rightarrow \) is not symmetric. A relation \(R \) is symmetric if for all \(x, y \) such that \(x \ R \ y \) we have \(y \ R \ x \). Consider, for example, \(\langle 39 + 3, \sigma_0 \rangle \) and \(\langle 42, \sigma_0 \rangle \). We have \(\langle 39 + 3, \sigma_0 \rangle \rightarrow \langle 42, \sigma_0 \rangle \) but we do not have \(\langle 42, \sigma_0 \rangle \rightarrow \langle 39 + 3, \sigma_0 \rangle \). So \(\rightarrow \) is not symmetric.

The relation \(\rightarrow \) is anti-symmetric. A relation \(R \) is anti-symmetric if for all distinct \(x \) and \(y \) we do not have both \(x \ R \ y \) and \(y \ R \ x \). In our setting, if we have (distinct) configurations \(\langle e, \sigma \rangle \) and \(\langle e', \sigma' \rangle \) such that \(\langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \), then we do not have that \(\langle e', \sigma' \rangle \rightarrow \langle e, \sigma \rangle \).

Here is one way to prove this. If we did have distinct configurations \(\langle e, \sigma \rangle \) and \(\langle e', \sigma' \rangle \) such that \(\langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \) and \(\langle e', \sigma' \rangle \rightarrow \langle e, \sigma \rangle \), then we could construct an infinite sequence of small steps:
\[
\langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \rightarrow \langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \rightarrow \langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \rightarrow \ldots
\]
But this would contradict the property that all programs in our language of arithmetic expressions with assignments terminate!

The relation \(\rightarrow\) is not transitive. A relation \(R\) is transitive if for all \(x, y, z\), if \(x R y\) and \(y R z\) then \(x R z\). Consider the configurations \((2 + 3) \times 7, \sigma_0\) and \((5 \times 7, \sigma_0)\) and \((42, \sigma_0)\). We have \((2 + 3) \times 7, \sigma_0) \rightarrow (5 \times 7, \sigma_0)\) and \((5 \times 7, \sigma_0) \rightarrow (42, \sigma_0)\) but we do not have \((2 + 3) \times 7, \sigma_0) \rightarrow (42, \sigma_0)\).

3 Large-step operational semantics

Consider the large-step operational semantics for the language of arithmetic expressions (Lecture 4). Let \(\sigma_0\) be a store that maps all program variables to zero.

(a) Show a derivation that \(\langle 3 + (5 \times \text{bar}), \sigma_0 \rangle \Downarrow \langle 3, \sigma_0 \rangle\).

\[
\begin{array}{c}
\langle 3, \sigma_0 \rangle \Downarrow \langle 3, \sigma_0 \rangle \\
\langle 5, \sigma_0 \rangle \Downarrow \langle 5, \sigma_0 \rangle \\
\langle \text{bar}, \sigma_0 \rangle \Downarrow \langle 0, \sigma_0 \rangle \\
\langle 3 + (5 \times \text{bar}), \sigma_0 \rangle \Downarrow \langle 3, \sigma_0 \rangle
\end{array}
\]

(b) Find an integer \(n\) and store \(\sigma'\) such that \(\langle \text{foo} := 5; (\text{foo} + 2) \times 7, \sigma_0 \rangle \Downarrow \langle n, \sigma' \rangle\).

If you have time and a big piece of paper, give the derivation of \(\langle \text{foo} := 5; (\text{foo} + 2) \times 7, \sigma_0 \rangle \Downarrow \langle n, \sigma' \rangle\).

\[
\begin{array}{c}
\langle \text{foo} := 5; (\text{foo} + 2) \times 7, \sigma_0 \rangle \Downarrow \langle 49, \sigma_0[\text{foo} \mapsto 5]\rangle \\
\langle 5, \sigma_0 \rangle \Downarrow \langle 5, \sigma_0 \rangle \\
\langle \text{foo} + 2, \sigma' \rangle \Downarrow \langle 7, \sigma' \rangle \\
\langle (\text{foo} + 2) \times 7, \sigma' \rangle \Downarrow \langle 49, \sigma' \rangle
\end{array}
\]

Answer: We have \(\langle \text{foo} := 5; (\text{foo} + 2) \times 7, \sigma_0 \rangle \Downarrow \langle 49, \sigma_0[\text{foo} \mapsto 5]\rangle\).

In the following derivation, let \(\sigma' = \sigma_0[\text{foo} \mapsto 5]\).

(c) Is the relation \(\Downarrow\) reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?

(For each of these questions, if the answer is “no”, what is a suitable counterexample? If any of the answers are “yes”, think about how you would prove it.)

Answer: The relation \(\Downarrow\) is not reflexive. A relation \(R\) is reflexive if for all \(x\) in the domain of \(R\) we have \(x R x\). Consider, for example, \((3 + 4, \sigma_0)\). It is not the case that \((3 + 4, \sigma_0) \Downarrow (3 + 4, \sigma_0)\), and so \(\Downarrow\) is not reflexive.

The relation \(\Downarrow\) is not symmetric. A relation \(R\) is symmetric if for all \(x, y\) such that \(x R y\) we have \(y R x\). Consider, for example, \((39 + 3, \sigma_0)\) and \((42, \sigma_0)\). We have \((39 + 3, \sigma_0) \Downarrow (42, \sigma_0)\) but we do not have \((42, \sigma_0) \Downarrow (39 + 3, \sigma_0)\). So \(\Downarrow\) is not symmetric.
The relation ⇓ is not anti-symmetric. A relation R is anti-symmetric if for all distinct x and y we do not have both x R y and y R x. In our setting, if we have (distinct) configurations \(\langle e, \sigma \rangle \) and \(\langle n, \sigma' \rangle \) such that \(\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \) and \(e' \) is not an integer, then we do not have that \(\langle n, \sigma' \rangle \Downarrow \langle e, \sigma \rangle \).

This can be proven by inspection of the rules, or by induction on the derivation of \(\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \).

The relation ⇓ is transitive. A relation R is transitive if for all x, y, z, if x R y and y R z then x R z. To prove this, suppose that \(\langle e, \sigma \rangle \Downarrow \langle e', \sigma' \rangle \) and \(\langle e', \sigma' \rangle \Downarrow \langle e'', \sigma'' \rangle \). By examination of the rules, we have that \(e' \) is an integer. Thus, by the rule INT we have \(\langle e', \sigma' \rangle \Downarrow \langle e', \sigma' \rangle \). Moreover, by the determinism of the arithmetic language (which we discussed in Lecture 2), we have that \(e' = e'' \) and \(\sigma' = \sigma'' \). Thus we have that \(\langle e, \sigma \rangle \Downarrow \langle e'', \sigma'' \rangle \) as required.