Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Logic Programming; Dynamic Types; Probabilistic Programming
Section and Practice Problems

April 20- April 24, 2020

1 Logic Programming

To try playing around with Prolog, gotolhttp://www.swi-prolog.org/. You will be able to use Prolog
online athhttps://swish.swi-prolog.org/\

To try playing around with Datalog, you can go to either http://abcdatalog.seas.harvard.
edu/|to download a Java-based Datalog implementation, or you can go to https://datalog.db.in.
tum. de/|to use Datalog online.

Although you can use the tools above to get the answers to the section problems below very easily, work
out the answers by hand (to make sure you understand the semantics of Prolog and Datalog), and then you
can check your answers by using the tools to execute the programs.

(a) Consider the following Prolog program (where [is a constant representing the empty list, [¢] is short-
hand for cons(t, []) and [t1, t2|t3] is shorthand for cons(t1, cons(tz, t3)).

foo([J, [1)-
foo([X], [X]).
foo([X,Y|S], [Y, X|T)) :- foo(S,T).

For each of the following queries, compute the substitutions that Prolog will generate, if any. (Note
that there is a difference between an empty substitution, and no substitution.) If the query evaluation
will not terminate, explain why.

Answer: Intuitively, foo(S,T) holds for two lists S and T if they are the same length, and for all i, the 2ith
and 2i + 1th elements of S are equal, respectively, to the 2i 4+ 1th and 2ith elements of T

e foo([a, b], X).
X = [b,a]
e foo([a,b,c], X).
X = [b,a,c]
e foo([a, b, [a, b])
No substitutions returned
e foo(X, [a])
X = [a]

http://www.swi-prolog.org/
https://swish.swi-prolog.org/
http://abcdatalog.seas.harvard.edu/
http://abcdatalog.seas.harvard.edu/
https://datalog.db.in.tum.de/
https://datalog.db.in.tum.de/

Logic Programming; Dynamic Types; Probabilistic Programming
Section and Practice Problems

e foo(X,Y).
X=10[], Y=1]
X =1[A, B], Y= [B, A]
X =1[A, B C], Y=[B, A C]
X =1[A B C, D], Y=[B, A D, C]
X =1[A B C, D, E], Y=[B, A D, C, E]
X = [A, B, C, D, E, F], Y = [B, A, D, C, F, E]

The evaluation of the query never terminates.

(b) Consider the following Datalog program.

bar(a, b,).
bar(X,Y, Z) :- bar(Y, X, Z).
bar(X,Y, Z) - bar(Z,Y, X), quux(X, Z)

Find all solutions to the query bar(X,Y, 7).

Answer: We start by the set of facts that are known, Sy, and then given S; we produce S;11 by unifying the
horn clauses with the known facts to derive new facts, and repeat until we reach a fixed point.

So = {bar(a, b, c)., quux(b,c). d
Sy = {bar(a, b, c)., quux(b,c)., quux(c,d
Sy = {bar(a, b, c)., quux(b,c)., ,d).

bar(c, a,b)., quux(d, b)., quux

S3 = {bar(a, b, c)., quux(b, c) quux(c, d).

., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).}
bar(b, a, ¢)., quux(c, b)., quux(d, ¢)., quux(b, d).,
b, b).quux(c,c).}

S4 = {bar(a, b, c)., quux(b, c) quux(d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).,
bar(c, a,b)., quux(d, b)., quux

Since Ss and Sy are the same (i.e., applying the rules to Ss doesn’t derive any new facts) we have a fixed point.
So all solutions to the query bar(X,Y, Z)? are:

(c) Suppose that we represent a directed graph using the predicates edge(X,Y) to indicate that there is

Page 2 of

Logic Programming; Dynamic Types; Probabilistic Programming
Section and Practice Problems

an edge from node X to node Y. For example, the following graph is represented by the following

facts:
node(a).
a b ¢ node(b).
I / node(c).
d node(d).
edge(a, b

(i) Write a Datalog program that computes reachable(X,Y"), where reachable(X, Y") holds if there is
a path (of zero or more edges) from X to Y.

Answer:

reachable(X, X) :- node(X).
reachable(X,Y") :- edge(X, Z), reachable(Z,Y).

Note that we can’t just use the clause reachable(X, X)., as that would not bind variable X in the body of
clause, which violates the requirements of Datalog. That is, X is reachable from itself only if X is a node.

(ii) Write a Datalog program that computes sameSCC(X,Y"), where sameSCC(X,Y) holds if nodes X
and node Y are in the same strongly connected component. (Hint: use the predicate reachable.)

Answer: Two nodes a and b are in the same strongly connected component if and only if there is a path
from a to b, and a path from b to a.

sameSCC(X,Y) :- reachable(X,Y"), reachable(Y, X).

For our example graph above, node a is in its own strongly connected component, but nodes b, c, and d
are in the same SCC. So the result of the query sameSCC(X,Y")? is the following:

sameSCC
sameSCC
sameSCC

4
4

14
sameSCC

sameSCC
sameSCC
sameSCC
sameSCC
sameSCC
sameSCC

a

b

b

b,
Cy
Cy
Cy
d,
d
d

4

0. Q0 0 Q0 Q0 Q00w

(
(
(
(
(
(
(
(
(
(

7

Page 3 of

Logic Programming; Dynamic Types; Probabilistic Programming
Section and Practice Problems

2 Dynamic types and contracts

(a) To make sure you understand the operational semantics of dynamic types and exceptions, show the
execution of the following program under the semantics of Section 1 of the Lecture 25 notes.

let f = \z.42 + i
let g = Ay. (y true) + 42in
9f

Answer:

letf=Xx. 42+ xzinletg = \y. (y true) +42ing f
—letg = Ay. (y true) + 42 ing (A\x. 42 + x)
—(Ay. (y true) + 42) (A\x.42 + z)
—((Az.42 + x) true) 4 42
—>(42 + true) + 42
—Err + 42
—Err

(b) Modify the program from question (a) by adding appropriate error handlers (i.e., expressions of the
form try e; catch z. e, to catch the type error and return the integer 42 as the final result of the program.
There are multiple places in the program where you can insert an error handler to achieve the desired
result. Show three variations and their executions. (Note that the semantics for the execution of your
programs is from Part 2 (Exception handling) of the Lecture 22 notes.)

Answer: Here is a version where we add an error handler in the body of function f.

let f = Ax. (try (42 +) catch 2. 0) in
letg = \y. (y true) + 42 in
gf

let f = Ax. (try (42 + x) catch z. 0) inlet g = A\y. (y true) +42ing f
—letg = Ay. (y true) + 42 in g (Az. (try (42 + z) catch z. 0))
—(Ay. (y true) 4+ 42) (M. (try (42 4+ z) catch z. 0))
—((Az. (try (42 + x) catch z. 0)) true) + 42
—(try (42 + true) catch z. 0) + 42
—(try (Err 1) catch z. 0) + 42
—0 + 42
—42

Here’s another version, where we add an error handler in the body of function g.

let f = \z.42 + z in
let g = \y. (try (y true) catch 2. 0) + 42 in
9f

Page 4 of

Logic Programming; Dynamic Types; Probabilistic Programming
Section and Practice Problems

let f = Ax.42 4z inlet g = Ay. (try (y true) catch 2. 0) +42ing f
—letg = \y. (try (y true) catch 2. 0) + 42 ing (A\z. 42 + x)
—(Ay. (try (y true) catch 2. 0) + 42) (A\z. 42 + x)
—(try (Az. 42 + x) true) catch z. 0) + 42
—(try (42 + true) catch 2. 0) + 42
—(try (Err 1) catch z. 0) + 42
—0 + 42
—42

Finally, here is a version where we put the error handling code at the top level.

letf =Xx. 42+ x in
letg = \y. (y true) +42 in
try g f catch z. 42

let f = \x.42 + x inlet g = \y. (y true) + 42 intry g f catch z. 42
—letg = Ay. (y true) + 42 intry g (Ax. 42 4 x) catch z. 42
—try (Ay. (y true) 4+ 42) (Az.42 +) catch z. 42
((Az.42 4 x) true) + 42) catch z. 42
(42 + true) + 42) catch z. 42
(Err 1) + 42) catch z. 42
Err 1) catch z. 42

—try
—>try
—try

~ ~ —~

—try
—42

(c) Modify the program from question (a) by adding appropriate dynamic type checks to raise the error
as early as possible. When does your program detect the error?

Answer: This version of the code adds dynamic type checks on all arquments and on results of function
applications.

let f = Az.if (is_int? z) then 42 + z else raise 3 in
letg = Ay.if (is_fun? y) then
lety’ = (y true) inif (is_int? 3') then ¢y + 42 else raise 3
else
raise 3 in
leta = g f inif (is_int? a) then a else raise 3

The execution detects the error as soon as function f is invoked, i.e., is_int? x evaluates to false when x is
replaced with true.

(d) Modify the program from question (a) by adding contracts that specify the types of the input and
output of f and g. Show the execution of the modified program.

Page 5 of

Logic Programming; Dynamic Types; Probabilistic Programming
Section and Practice Problems

Answer:

let f = monitor(Az.42 4 x,is_int? — is_int?) in
let g = monitor(\y. (y true) + 42, (is_bool? —— is_int?) — is_int?) in

gf

3 Probabilistic Programming

(a) Consider the following Bayesian Network for enrollment in intro level CS courses:

T L
CS50 | 0.5 | 0.5
CS50 | CS51 | ICS51
T 0.6 0.4
L 0.05 | 0.95

CS50 | CS51 | CSe1 | 1CS61

T T 0.5 0.5
T 1 0.4 0.6
L T 0.95 0.05
L L 0.01 0.99

What is the probability that someone takes CS51 given that they took CS550?

Answer:
This follows from the definition of the network. P(C'S51|/CS50) = 0.6.

(b) What is the probability that someone takes CS51 given that they took CS50?

Answer: This is a conditional probability.

P(CS61[CS50) = > P(CS61|S,CS50)P(S | CS50)
CS51=S8
= P(C'S61| CS51,CS50)P(CS51 | CS50) + P(CS61 | 1CS51,CS50)P(ICS51 | C'S50)
= (0.5)(0.6) + (0.4)(0.6)
=0.54

(c) What is the probability that someone has taken CS50 given that they took CS61?

Page 6 of

Logic Programming; Dynamic Types; Probabilistic Programming
Section and Practice Problems

Answer: This is Bayesian Inference.

P(CS61 | CS50)P(C'S50)

P(CS50| CS61) = P(CS61) by Bayes’ Theorem
~ (0.54)(0.5)
~ "P(CS61)
(0.54)(0.5)

B ZCSSO:T,CS’M:S P(CS61 ‘ S> T)P(Sa T)

Note that P(CS50,CS51) = P(CS51|CS50)P(CS50) and similarly for the other combinations of S and T.
You can see that as the number of dependent variables scales this problem becomes much harder to do by hand
which is where probabilistic programming comes in.

(d) You want to use probabilistic programming for your new favorite hobby: bird watching! You live in a
great area for birding, so you decide to run a linear regression on the correlation between the number
of birds and the time of day. What is your output (or data) for the probabilistic program and what are
your parameters?

Answer:

The output (or data) for your program could be the number of birds you saw at each hour of the day the prior
day. We would then want to find the parameters m and b such that we get the best fit for y = max + b. This is a
terrible model as it implies an infinite number of birds.

(e) Your linear regression didn’t work you had hoped it would, but you’ve moved on to a bigger question:
where should birds land to find a worm? Say that birds land in a two dimensional field. What is the
data you give your program and what are the parameters you hope to find?

Answer:

The data for your program is where birds landed in the field and where worms were found. We need to change
the parameters. Rather than of parameters m and b (related y = ma + b), we now want to use the parameters
such that there is a worm at (x,y).

Page 7 of

	Logic Programming
	Dynamic types and contracts
	Probabilistic Programming

