
More types
CS 152 (Spring 2022)

Harvard University

Thursday, March 3, 2022

1 / 28

Today, we will learn about

I typing extensions to the simply-typed
lambda-calculus

2 / 28

Products
Syntax:

(e1, e2)

#1 e

#2 e

Context:

E ::= . . . | (E , e) | (v ,E) | #1 E | #2 E

Operational semantic rules:

#1 (v1, v2) −→ v1 #2 (v1, v2) −→ v2

3 / 28

Typing of Products

Product type: τ1 × τ2
Typing rules:

Γ ` e1 :τ1 Γ ` e2 :τ2

Γ ` (e1, e2) :τ1 × τ2

Γ ` e :τ1 × τ2
Γ ` #1 e :τ1

Γ ` e :τ1 × τ2
Γ ` #2 e :τ2

4 / 28

Sums
Syntax:

e ::= · · · | inlτ1+τ2 e | inrτ1+τ2 e | case e1 of e2 | e3
v ::= · · · | inlτ1+τ2 v | inrτ1+τ2 v

Context:

E ::= · · · | inlτ1+τ2 E | inrτ1+τ2 E | case E of e2 | e3
Operational rules:

case inlτ1+τ2 v of e2 | e3 −→ e2 v

case inrτ1+τ2 v of e2 | e3 −→ e3 v

5 / 28

Typing of Sums

Sum type: τ1 + τ2
Typing rules:

Γ ` e :τ1

Γ ` inlτ1+τ2 e :τ1 + τ2

Γ ` e :τ2

Γ ` inrτ1+τ2 e :τ1 + τ2

Γ ` e :τ1 + τ2 Γ ` e1 :τ1 → τ Γ ` e2 :τ2 → τ

Γ ` case e of e1 | e2 :τ

6 / 28

Example Program

let f : (int + (int→ int))→ int =

λa : int + (int→ int).

case a of λy . y + 1 | λg . g 35 in

let h : int→ int = λx : int. x + 7 in

f (inrint+(int→int) h)

7 / 28

Recursion

We saw in last lecture that we could not type
recursive functions or fixed-point combinators in the
simply-typed lambda calculus. So instead of trying
(and failing) to define a fixed-point combinator in
the simply-typed lambda calculus, we add a new
primitive µx :τ. e to the language. The evaluation
rules for the new primitive will mimic the behavior
of fixed-point combinators.

8 / 28

Recursion: Syntax

e ::= · · · | µx :τ. e

Intuitively, µx :τ. e is the fixed-point of the function
λx :τ. e.
Note that µx :τ. e is not a value, regardless of
whether e is a value or not.

9 / 28

Recursion: Operational Semantics

There is a new axiom, but no new evaluation
contexts.

µx :τ. e −→ e{(µx :τ. e)/x}

Note that we can define the letrec x :τ = e1 in e2
construct in terms of this new expression.

letrec x :τ = e1 in e2 , let x :τ = µx :τ. e1 in e2

10 / 28

Recursion: Typing

Γ[x 7→ τ] ` e :τ

Γ ` µx :τ. e :τ

11 / 28

Example Program

FACT , µf : int→ int.

λn : int. if n = 0 then 1 else n × (f (n − 1))

letrec fact : int→ int

= λn : int. if n = 0 then 1 else n × (fact (n − 1))

in . . .

12 / 28

Non-termination?

Recall operational semantics:

µx :τ. e −→ e{(µx :τ. e)/x}

Recall typing:

Γ[x 7→ τ] ` e :τ

Γ ` µx :τ. e :τ

13 / 28

Non-termination

We can write non-terminating computations for any
type: the expression µx :τ. x has type τ , and does
not terminate.

14 / 28

Although the µx :τ. e expression is normally used to
define recursive functions, it can be used to find
fixed points of any type. For example, consider the
following expression.

µx : (int→ bool)× (int→ bool).

(λn : int. if n = 0 then true else ((#2 x) (n − 1)),

λn : int. if n = 0 then false else ((#1 x) (n − 1)))

This expression has type
(int→ bool)× (int→ bool)—it is a pair of
mutually recursive functions; the first function
returns true only if its argument is even; the second
function returns true only if its argument is odd.

15 / 28

References: Syntax and Semantics

e ::= · · · | ref e | !e | e1 := e2 | `
v ::= · · · | `
E ::= · · · | ref E | !E | E := e | v := E

Alloc
< ref v , σ >−→< `, σ[` 7→ v] >

` 6∈ dom(σ)

Deref
< !`, σ >−→< v , σ >

σ(`) = v

Assign
< ` := v , σ >−→< v , σ[` 7→ v] >

16 / 28

Reference Type τ ref

I We add a new type for references: type τ ref is
the type of a location that contains a value of
type τ .

I For example the expression ref 7 has type
int ref, since it evaluates to a location that
contains a value of type int.

I Dereferencing a location of type τ ref results
in a value of type τ , so !e has type τ if e has
type τ ref.

I And for assignment e1 := e2, if e1 has type
τ ref, then e2 must have type τ .

17 / 28

References: Typing

τ ::= · · · | τ ref

Γ ` e :τ

Γ ` ref e :τ ref

Γ ` e :τ ref

Γ ` !e :τ

Γ ` e1 :τ ref Γ ` e2 :τ

Γ ` e1 := e2 :τ

18 / 28

References: Typing

How do we type locations?

19 / 28

References: Typing

Noticeable by its absence is a typing rule for
location values. What is the type of a location value
`? Clearly, it should be of type τ ref, where τ is the
type of the value contained in location `. But how
do we know what value is contained in location `?
We could directly examine the store, but that would
be inefficient. In addition, examining the store
directly may not give us a conclusive answer!
Consider, for example, a store σ and location `
where σ(`) = `; what is the type of `?

20 / 28

References: Store Typings

Instead, we introduce store typings to track the
types of values stored in locations. Store typings are
partial functions from locations to types. We use
metavariable Σ to range over store typings. Our
typing relation now becomes a relation over 4
entities: typing contexts, store typings, expressions,
and types. We write Γ,Σ ` e :τ when expression e
has type τ under typing context Γ and store typing
Σ.

21 / 28

References: Typing

Γ,Σ ` e :τ

Γ,Σ ` ref e :τ ref

Γ,Σ ` e :τ ref

Γ,Σ ` !e :τ

Γ,Σ ` e1 :τ ref Γ,Σ ` e2 :τ

Γ,Σ ` e1 := e2 :τ

Γ,Σ ` ` :τ ref
Σ(`) = τ

22 / 28

References: Soundness?

So, how do we state type soundness? Our type
soundness theorem for simply-typed lambda calculus
said that if Γ ` e :τ and e −→∗ e ′ then e ′ is not
stuck. But our operational semantics for references
now has a store, and our typing judgment now has a
store typing in addition to a typing context. We
need to adapt the definition of type soundness
appropriately. To do so, we define what it means for
a store to be well-typed with respect to a typing
context.

23 / 28

References: Soundness Aux. Def.

Store σ is well-typed with respect to typing context
Γ and store typing Σ, written Γ,Σ ` σ , if
dom(σ) = dom(Σ) and for all ` ∈ dom(σ) we have
Γ,Σ ` σ(`) :τ where Σ(`) = τ .

24 / 28

References: Soundness Theorem

If ∅,Σ ` e :τ and ∅,Σ ` σ and
< e, σ >−→∗< e ′, σ′ > then either e ′ is a value, or
there exists e ′′ and σ′′ such that
< e ′, σ′ >−→< e ′′, σ′′ >.

25 / 28

References: Soundness

We can prove type soundness for our language using
the same strategy as for the simply-typed lambda
calculus: we use preservation and progress. The
progress lemma can be easily adapted for the
semantics and type system for references. Adapting
preservation is a little more involved, since we need
to describe how the store typing changes as the
store evolves. The rule Alloc extends the store σ
with a fresh location `, producing store σ′. Since
dom(Σ) = dom(σ) 6= dom(σ′), it means that we
will not have σ′ well-typed with respect to typing
store Σ.

26 / 28

References: Soundness

Since the store can increase in size during the
evaluation of the program, we also need to allow the
store typing to grow as well.

27 / 28

References: Preservation Lemma

If ∅,Σ ` e :τ and ∅,Σ ` σ and
< e, σ >−→< e ′, σ′ > then there exists some
Σ′ ⊇ Σ such that ∅,Σ′ ` e ′ :τ and ∅,Σ′ ` σ′.

28 / 28

