
Logic Programming
With Aaron Bembenek, CS PhD student under Prof. Steve Chong.

Agenda:

1. Declarative programming

2. Logic programming basics

3. Negation

4. Summary

===

What is an algorithm?

if you want to run this notebook, you'll need to install
the Clingo module for Python (https://potassco.org/clingo/)
import clingo

def run(prog):
ctl = clingo.Control(["0", "--warn=none"])
ctl.add("base", [], prog)
ctl.ground([("base", [])])
with ctl.solve(yield_=True) as handle:

solution = False
for m in handle:

solution = True
print("Answer:")
for tup in m.symbols(atoms=True):

print("\t", tup)
if not solution:

print("No model")

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

1 of 18 4/18/22, 11:25 AM

https://people.seas.harvard.edu/~bembenek/
https://people.seas.harvard.edu/~bembenek/

{'a': ['a', 'b', 'c', 'd'],
 'b': ['b', 'c', 'd'],
 'c': ['b', 'c', 'd'],
 'd': ['d']}

graph is a map from source vertex to list of neighbors
def mystery_func1(graph):

m = {}
for src in graph:

worklist = list(graph[src])
visited = set([src])
reach = [src]
while worklist:

dst = worklist.pop() # pop from end of list
if dst not in visited:

visited.add(dst)
reach.append(dst)
worklist.extend(graph[dst])

m[src] = reach
for v in m.values(): v.sort() # for prettier output
return m

g1 = {
"a": ["b"],
"b": ["c"],
"c": ["b", "d"],
"d": [],

}

from IPython.display import Image
Image(filename="graph.png", height="100")

mystery_func1(g1)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

2 of 18 4/18/22, 11:25 AM

{'a': ['a', 'b', 'c', 'd'],
 'b': ['b', 'c', 'd'],
 'c': ['b', 'c', 'd'],
 'd': ['d']}

What is the relation between these two algorithms?

!"Solving the same problem

!"Using different graph traversals

graph is a map from source vertex to list of neighbors
def mystery_func2(graph):

m = {}
for src in graph:

worklist = list(graph[src])
visited = set([src])
reach = [src]
while worklist:

dst = worklist.pop(0) # pop from beginning of list
if dst not in visited:

visited.add(dst)
reach.append(dst)
worklist.extend(graph[dst])

m[src] = reach
for v in m.values(): v.sort() # for prettier output
return m

mystery_func2(g1)

from IPython.display import Image
Image(filename="kowalski.png")

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

3 of 18 4/18/22, 11:25 AM

Declarative programming

!"Programmers specify "what" they want to compute

!"The language runtime figures out how to compute it

That is: it's all logic, no control!

1. What is the logic part of our all-pairs graph reachability algorithm?

!"the mathematical definition of graph reachability

1. What is the control part?

!"the implementation details: traversal order, visited set, worklist

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

4 of 18 4/18/22, 11:25 AM

1. How could we specify the logic more formally?

!"for every node X, X reaches itself

!"for every node A, B, if there is an edge A to B, then B is reachable from A

!"if there is an edge A to B, and C is reachable from B, it's reachable from A

Addendum: One of these rules is redundant. Which one?

Answer:
 node(a)
 node(b)
 node(c)
 node(d)
 reach(a,a)
 reach(b,b)
 reach(c,c)
 reach(d,d)
 reach(a,b)
 reach(b,c)
 reach(c,b)
 reach(c,d)
 reach(b,d)
 reach(a,c)
 reach(a,d)
 edge(a,b)
 edge(b,c)
 edge(c,b)
 edge(c,d)

reach_prog = """

reach(X, X) :- node(X).

reach(X, Y) :- edge(X, Y).

reach(X, Z) :- edge(X, Y), reach(Y, Z).

node(a).
node(b).
node(c).
node(d).

edge(a, b).
edge(b, c).
edge(c, b).
edge(c, d).

"""

run(reach_prog)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

5 of 18 4/18/22, 11:25 AM

A few things to keep in mind:

!"What might be the advantages of declarative programming?

!"What might be the disadvantages?

===

Logic programming basics

Syntax

Horn clause h ::= A :- A, ..., A.
Atom A ::= p(t, ..., t)
Term t ::= X | f(t, ..., t)

!" p is a predicate symbol

!" X is a variable

!" f is an uninterpreted function symbol (i.e., a constructor)

A program consists of a set of Horn clauses.

In a Horn clause, the atom on the left of a :- is known as the "head"; the atoms to the

right are known as the "body".

A Horn clause with an empty body is known as a "fact" (typically the :- is omitted). A

Horn clause with a non-empty body is known as a "rule".

Many variants support additional constructs, such as built-in (dis)equality predicates like

t = t and t != t .

Semantics

What does a logic program mean?

Answer:
 p(f(a))

prog = """

p(f(a)).
p(f(a)).

"""
run(prog)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

6 of 18 4/18/22, 11:25 AM

Answer:
 a
 b

Answer:

Answer:

There are three traditional (equivalent) semantics defining the meaning of a logic

program:

!"model theory

!"fixpoint theory

!"proof theory

We'll look at the first one.

prog = """

a.
b :- a.

"""
run(prog)

prog = """

b :- a.

"""
run(prog)

prog = """

n(0).
n(s(K)) :- n(K).
"""
run(prog)

prog = """

a :- a.

"""
run(prog)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

7 of 18 4/18/22, 11:25 AM

Model theory

TL;DR: view rules as logical implications. Meaning is the smallest set of facts including all

possible consequences.

Technically, the meaning of a logic program is its least Herbrand model.

To form a Herbrand model:

1. Form a ground (variable-free) program: create new versions of each rule, where all

the variables have been (consistently) replaced with every possible combination of

ground terms.

p(X) :- q(X).
s(X) :- r(X, Y).
r(a, b).

 |
 |
 V

p(a) :- q(a).
p(b) :- q(b).
s(a) :- r(a, a).
s(a) :- r(a, b).
s(b) :- r(b, a).
s(b) :- r(b, b).
r(a, b).

1. A fact (ground atom) A is in the model if there is a ground rule A :- A1, ...,
An. and Ai is in the model for all i such that 1 <= i <= n .

r(a, b)
s(a)

Theorem: for every logic program, there is a least Herbrand model -- i.e., a Herbrand

model that is smaller than all others. This means that a logic program is guaranteed to

have a single meaning.

Note: The Herbrand model might be infinite.

p(o).
p(s(X)) :- p(X).

General logic programming is Turing-complete!

forall X1, ..., Xm. p0(...) <== p1(...) /\ ... /\ pn(...)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

8 of 18 4/18/22, 11:25 AM

Example: Type checking/inference (adapted from Prof. Amin's
lecture notes)

Logic programming seems weird... there is no arithmetic, (interpreted) functions, etc.

What can we do with it?

Let's build a type checker for expressions in this language:

exp e ::= n | x | fun x -> e | e1 e2 | e1 + e2

Syntactic translation

First, we need a way to translate expressions into logic programming terms:

[[]] : exp -> LP term

[[n]] = literal(n)
[[x]] = var(x)
[[fun x -> e]] = lambda(x, [[e]])
[[e1 e2]] = apply([[e1]], [[e2]])
[[e1 + e2]] = plus([[e1]], [[e2]])

For example,

(fun x -> x + x) 21

translates to

apply(lambda(x, plus(x, x)), literal(21))

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

9 of 18 4/18/22, 11:25 AM

Typing rules

Now we can write our actual typing rules. We are going to use the following function

symbols to represent types: int and arrow .

type(G, literal(X), int).

\Gamma |- n : int

type(G, apply(M, N), T) :- type(G, M, arrow(S, T)), type(G, N,
S).

\Gamma |- M : S -> T \Gamma |- N : S

\Gamma |- M N : T

type(G, plus(M, N), int) :- type(G, M, int), type(G, N, int).

type(G, lambda(X, M), arrow(S, T)) :- type(cons(pair(X, S),
G), M, T).

% Helper
member(X, cons(X, Xs)).
member(X, cons(Y, Xs)) :- member(X, Xs).

type(G, var(X), T) :- member(pair(X, T), G).

Correction: Variable lookup does not work in the presence of shadowed variables. How

could we fix it?

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

10 of 18 4/18/22, 11:25 AM

Type checking/inference

Problem: This program has an infinite Herbrand model.

Solution: Compute only part of Herbrand model necessary for answering a particular

query (the approach of Prolog).

To check whether our example expression has type int, use this query:

type(nil, apply(lambda(x, plus(x, x)), literal(21)), int)?

This is asking: "Does this predicate hold?"

To infer the type of our example expression, use this query:

type(nil, apply(lambda(x, plus(x, x)), literal(21)), T)?

Note the logic programming variable T : this query is saying "Give me all the T such that

this predicate holds."

Datalog

Datalog is a popular restricted form of general logic programming:

!"All uninterpreted functions are nullary (i.e., they take no arguments; they're

constants)

!"Every variable appearing in the head of a rule must appear in the body

Not okay: member(X, cons(Y, Xs)) :- member(X, Xs).

1. cons is not nullary

2. Y does not appear in the rule body

These restrictions mean that all Datalog programs have a finite least model; from a

practical perspective:

!"Evaluating a Datalog program should always terminate

!"You do not need to provide a query (although it can be useful for performance)

In fact, Datalog is PTIME-complete, if you consider the rules of a program to be fixed and

the facts to be variable.

===

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

11 of 18 4/18/22, 11:25 AM

Negation

So far, we have considered logic programming without negation. Let's add it.

Horn clause h ::= A :- L, ... L.
Literal L ::= A | not A
Atom A ::= p(t, ..., t)
Term t ::= X | f(t, ..., t)

Now, atoms in rule bodies can be negated.

unreach(X, Y) :- not reach(X, Y).

Datalog restriction: every variable in a negated atom must also appear in a positive atom

in the rule body.

unreach(X, Y) :- node(X), node(Y), not reach(X, Y).

The trouble with negation
Example 1:

p(a) :- not q(a).

% possibility 1: {}
% possibility 2: { p(a) }
% possibility 3: { q(a) }

Example 2:

p(a) :- not q(a).
q(a) :- not p(a).

Example 3:

p(a) :- not p(a).

We're no longer guaranteed to have a least model!

Stratified negation (Datalog)

TL;DR: Restrict allowable programs, so that a program is guaranteed to have a

distinguished Herbrand model.

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

12 of 18 4/18/22, 11:25 AM

Step 1: restrict

A predicate p depends negatively on another predicate q iff:

!"There is a rule with p in the head atom and q in a negated body atom

!"There is a rule with p in the head atom and r in a body literal, and r depends

negatively on q

If any predicate depends negatively on itself, reject the program!

% Reject this program!
p(X) :- q(X).
q(X) :- r(X), not p(X).

!" p is in the head of a rule with q in the body

!" q negatively depends on p
!"ergo, p depends negatively on p

Step 2: stratify

Partition the predicates into strata, so that predicates in stratum i depend only on

predicates in strata j for j <= i .

Theorem: A program that passes step 1 is guaranteed to be stratifiable so that, if p
depends negatively on q , then q is in a lower stratum than p .

Step 3: construct distinguished model

1. Find a model for stratum 1.

2. Use it to "seed" the model for stratum 2 -- i.e., find a model for stratum 2, assuming

the model for stratum 1 holds.

3. Repeat for stratum 3 (using the model for stratum 2 as the "seed"), and so on...

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

13 of 18 4/18/22, 11:25 AM

Answer:
 node(a)
 node(b)
 node(c)
 node(d)
 reach(a,a)
 reach(b,b)
 reach(c,c)
 reach(d,d)
 reach(a,b)
 reach(b,c)
 reach(c,b)
 reach(c,d)
 reach(b,d)
 reach(a,c)
 reach(a,d)
 edge(a,b)
 edge(b,c)
 edge(c,b)
 edge(c,d)
 unreach(b,a)
 unreach(c,a)
 unreach(d,a)
 unreach(d,b)
 unreach(d,c)

unreach_prog = """

% stratum 1
reach(X, X) :- node(X).
reach(X, Y) :- edge(X, Y).
reach(X, Z) :- edge(X, Y), reach(Y, Z).

% stratum 2
unreach(X, Y) :- node(X), node(Y), not reach(X, Y).

node(a).
node(b).
node(c).
node(d).

edge(a, b).
edge(b, c).
edge(c, b).
edge(c, d).

"""
run(unreach_prog)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

14 of 18 4/18/22, 11:25 AM

Answer:
 p(a)

Pros with stratified negation:

!"Intuitive

!"Easy to compute

Cons

!"We cannot assign a meaning to all programs (e.g., examples 2 and 3)

Stable models (answer set programming)
TL;DR: do not restrict uses of negation, and allow for zero, one, or more (stable) models

Step 1: ground program

...as we discussed in section on logic programming semantics.

p(X) :- r(X), not q(X).
q(X) :- r(X), not p(X).
r(a).

 |
 |
 V

p(a) :- not q(a), r(a).
q(a) :- not p(a), r(a).
r(a).

example1 = """

p(a) :- not q(a).

% possible solution #1: { q(a) }
% possible solution #2: { p(a) }

% stratum 1: { q } --> model = {}
% stratum 2: { p } --> model = { p(a) }

"""
run(example1)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

15 of 18 4/18/22, 11:25 AM

Step 2: form reduct

Choose a set of ground facts S .

Rewrite the program:

!"If the ground program contains a rule with a body literal not A for some A in S ,

remove that rule from the program.

!"If the ground program contains a rule with a body literal not A for some A not in
S , remove that literal from the rule.

This program is known as the reduct w.r.t. S . It will have no negation.

Say we have this program:

p(a) :- not q(a), r(a).
q(a) :- not p(a), r(a).
r(a).

The reduct of this program with respect to the set S = { p(a), r(a) } is this

program:

p(a) :- r(a).
r(a).

Step 3: confirm stable model

Find the least model of the reduct. If this model is equivalent to S , then S is a stable

model -- that is, a solution to our logic program.

In our example, S = { p(a), r(a) } is a stable model. The other stable model is {
q(a), r(a) } .

Answer:
 r(a)
 q(a)

Answer:
 r(a)
 p(a)

How about this program? Think it through with your neighbor.

prog = """
p(X) :- not q(X), r(X).
q(X) :- not p(X), r(X).
r(a).
"""
run(prog)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

16 of 18 4/18/22, 11:25 AM

No model

Pros of stable model semantics:

!"Can assign a meaning to programs with unrestricted uses of negation

Cons:

!"Programs no longer have single solutions

!"Harder to compute

#"Finding whether a stable model exists is NP-complete (assuming that all function

symbols are nullary)

Something to think about: What is the relation between the stratified semantics and the

stable model semantics?

!"If a program is stratifiable, how many stable models does it have?

!"Do any of the stable models correspond to the model chosen under the stratified

semantics?

===

Summary

1. Logic programming is a form of declarative programming

!"Programmer focuses on the logic of the computation (i.e., the "what")

!"Runtime system takes care of the control (i.e, the "how")

2. Logic programming semantics are straightforward when there is no negation

3. Life gets a lot more difficult when you introduce negation

!"But the resulting languages are more useful/powerful

Big topics we haven't adequately addressed:

!"Prolog, the original (and a very popular) logic programming language

!"How logic programming languages are implemented (the "control" part)

!"Logic programming applications: AI, databases, constraint solving, ...

prog = """
p(a) :- not p(a).

% choice 1: S = { p(a) }
% choice 2: S = {}
"""
run(prog)

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

17 of 18 4/18/22, 11:25 AM

Complexity Applications

Prolog Turing-
complete

!"originally, natural language processing
!"expert systems
!"general computing

Datalog PTIME-
complete

!"originally, database query language (SQL +
recursion)

!"static program analysis
!"declarative networking
!"policy/protocol modeling

Answer set
programming NP-complete

!"constraint solving
!"scheduling and planning
!"other AI

logic_programming http://localhost:8889/nbconvert/html/logic_programming.ipynb?downlo...

18 of 18 4/18/22, 11:25 AM

