Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types Section and Practice Problems

Section 8

1 Parametric polymorphism

- (a) For each of the following System F expressions, is the expression well-typed, and if so, what type does it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing rules.)
 - $\Lambda A. \lambda x: A \rightarrow \text{int.} 42$
 - $\lambda y : \forall X. \ X \rightarrow X. \ (y \ [\textbf{int}]) \ 17$
 - $\Lambda Y. \Lambda Z. \lambda f: Y \to Z. \lambda a: Y. f a$
 - $\Lambda A. \Lambda B. \Lambda C. \lambda f: A \rightarrow B \rightarrow C. \lambda b: B. \lambda a: A. f a b$

Answer:

• $\Lambda A. \lambda x: A \rightarrow int. 42$ has type

$$\forall A. (A \rightarrow \textit{int}) \rightarrow \textit{int}$$

• $\lambda y : \forall X. \ X \rightarrow X. \ (y \ [\textbf{int}]) \ 17 \ has type$

$$(\forall X.\ X \to X) \to int$$

• $\Lambda Y. \Lambda Z. \lambda f: Y \rightarrow Z. \lambda a: Y. f \ a \ has type$

$$\forall Y. \ \forall Z. \ (Y \to Z) \to Y \to Z$$

• $\Lambda A. \Lambda B. \Lambda C. \lambda f: A \rightarrow B \rightarrow C. \lambda b: B. \lambda a: A. f \ a \ b$ has type

$$\forall A. \forall B. \forall C. (A \rightarrow B \rightarrow C) \rightarrow B \rightarrow A \rightarrow C$$

- (b) For each of the following types, write an expression with that type.
 - $\forall X. X \rightarrow (X \rightarrow X)$
 - $(\forall C. \forall D. C \rightarrow D) \rightarrow (\forall E. \mathsf{int} \rightarrow E)$
 - $\forall X. X \rightarrow (\forall Y. Y \rightarrow X)$

Answer:

• $\forall X. \ X \rightarrow (X \rightarrow X)$ is the type of

$$\Lambda X. \lambda x: X. \lambda y: X. y$$

• $(\forall C. \forall D. C \rightarrow D) \rightarrow (\forall E. \textbf{int} \rightarrow E)$ is the type of

$$\lambda f : \forall C. \ \forall D. \ C \rightarrow D. \ \Lambda E. \ \lambda x : int. (f [int] [E]) \ x$$

• $\forall X. \ X \rightarrow (\forall Y. \ Y \rightarrow X)$ is the type of

$$\Lambda X. \lambda x: X. \Lambda Y. \lambda y: Y. x$$

2 Records and Subtyping

- (a) Assume that we have a language with references and records.
 - (i) Write an expression with type

$$\{ cell : int ref, inc : unit \rightarrow int \}$$

such that invoking the function in the field *inc* will increment the contents of the reference in the field *cell*.

Answer: *The following expression has the appropriate type.*

$$\begin{array}{l} \textit{let } x = \textit{ref } 14 \textit{ in} \\ \{ \textit{ cell } = x, \textit{ inc } = \lambda u \text{:} \textit{unit.} \, x := (!x+1) \ \end{array} \}$$

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an expression that increments the contents of the cell twice.

Answer:

let
$$z = y.inc()$$
 in $y.inc()$

(b) The following expression is well-typed (with type **int**). Show its typing derivation. (Note: you will need to use the subsumption rule.)

$$(\lambda x: \{dogs: int, cats: int\}. x.dogs + x.cats) \{dogs = 2, cats = 7, mice = 19\}$$

Answer:

For brevity, let $e_1 \equiv \lambda x$: {dogs: int, cats: int}. x.dogs + x.cats) and let $e_2 \equiv \{dogs = 2, cats = 7, mice = 19\}$. The derivation has the following form.

The derivation of e_1 *is straight forward:*

(c) Suppose that Γ is a typing context such that

 $\Gamma(a) = \{ \textit{dogs} : \mathsf{int}, \textit{cats} : \mathsf{int}, \textit{mice} : \mathsf{int} \}$ $\Gamma(f) = \{ \textit{dogs} : \mathsf{int}, \textit{cats} : \mathsf{int} \} \rightarrow \{ \textit{apples} : \mathsf{int}, \textit{kiwis} : \mathsf{int} \}$

Write an expression e that uses variables a and f and has type {apples : int} under context Γ , i.e., $\Gamma \vdash e$:{apples:int}. Write a typing derivation for it.

Answer: A suitable expressions is f a. Note that f is a function that expects an expression of type $\{dogs : int, cats : int\}$ as an argument. Variable a is of type $\{dogs : int, cats : int\}$, which is a subtype, so we can use a as an argument to f.

Function f returns a value of type {apples: int, kiwis: int} but our expression e needs to return a value of type {apples: int}. But {apples: int, kiwis: int} is a subtype of {apples: int}, so it works out.

Here is a typing derivation for it. We abbreviate type {dogs: int, cats: int, mice: int} to DCM and abbreviate type {dogs: int, cats: int} to DC.

Which of the inference rules are uses of subsumption? Some of the derivations have been elided. Fill them in.

(d) Which of the following are subtypes of each other?

```
(a) {dogs:int, cats:int} → {apples:int}
(b) {dogs:int} → {apples:int}
(c) {dogs:int} → {apples:int, kiwis:int}
(d) {dogs:int, cats:int, mice:int} → {apples:int, kiwis:int}
(e) ({apples:int}) ref
(f) ({apples:int, kiwis:int}) ref
(g) ({kiwis:int, apples:int}) ref
```

For each such pair, make sure you have an understanding of *why* one is a subtype of the other (and for pairs that aren't subtypes, also make sure you understand).

Answer: *Of the function types:*

- (b) is a subtype of (a)
- (c) is a subtype of (b)
- (c) is a subtype of (d)
- (c) is a subtype of (a)
- (d) is not a subtype of either (a) or (b), or vice versa

The key thing is that for $\tau_1 \to \tau_2$ to be a subtype of $\tau_1' \to \tau_2'$, we must be contravariant in the argument type and covariant in the result type, i.e., $\tau_1' \le \tau_1$ and $\tau_2 \le \tau_2'$.

Let's consider why (b) is a subtype of (a), i.e., $\{dogs: int\} \rightarrow \{apples: int\} \leq \{dogs: int, cats: int\} \rightarrow \{apples: int\}$. Suppose we have a function f_b of type $\{dogs: int\} \rightarrow \{apples: int\}$, and we want to use it somewhere that wants a function g_a of type $\{dogs: int, cats: int\} \rightarrow \{apples: int\}$. Let's think about how g_a could be used: it could be given an argument of type $\{dogs: int, cats: int\}$, and so f_b had better be able to handle any record that has the fields dogs and cats. Indeed, f_b can be given any value of type $\{dogs: int\}$, i.e., any record that has a field dogs. So f_b can take any argument that g_b can be given The other way that a function can be used is by taking the result of applying it. The result types of the functions are the same, so we have no problem there. Here is a derivation showing the subtyping relation:

Let's consider why (d) is not a subtype of (a) and (a) is not a subtype of (d). (d) is not a subtype of (a) since they are not contravariant in the argument type (i.e., the argument type of (a) is not a subtype of the argument type of (d)). (a) is not a subtype of (d) since the result type of (a) is not a subtype of the result type of (d) (i.e., they are not covariant in the result type).

For the ref types:

- (f) is a subtype of (g) (and vice versa) assuming the more permissive subtyping rule for records that allows the order of fields to be changed.
- (e) is not a subtype of either (f) or (g), or vice versa.

3 Curry-Howard isomorphism

The following logical formulas are tautologies, i.e., they are true. For each tautology, state the corresponding type, and come up with a term that has the corresponding type.

For example, for the logical formula $\forall \phi. \phi \implies \phi$, the corresponding type is $\forall X. \ X \rightarrow X$, and a term with that type is $\Lambda X. \ \lambda x : X. \ x$. Another example: for the logical formula $\tau_1 \wedge \tau_2 \implies \tau_1$, the corresponding type is $\tau_1 \times \tau_2 \rightarrow \tau_1$, and a term with that type is $\lambda x : \tau_1 \times \tau_2 . \#1 \ x$.

You may assume that the lambda calculus you are using for terms includes integers, functions, products, sums, universal types and existential types.

(a)
$$\forall \phi. \ \forall \psi. \ \phi \land \psi \implies \psi \lor \phi$$

Answer: *The corresponding type is*

$$\forall X. \ \forall Y. \ X \times Y \rightarrow Y + X$$

A term with this type is

$$\Lambda X$$
. ΛY . λx : $X \times Y$. $\mathit{inl}_{Y+X} \# 2 \ x$

(b)
$$\forall \phi. \ \forall \psi. \ \forall \chi. \ (\phi \land \psi \implies \chi) \implies (\phi \implies (\psi \implies \chi))$$

Answer: The corresponding type is

$$\forall X. \ \forall Y. \ \forall Z. \ (X \times Y \to Z) \to (X \to (Y \to Z))$$

A term with this type is

$$\Lambda X. \Lambda Y. \Lambda Z. \lambda f: X \times Y \rightarrow Z. \lambda x: X. \lambda y: Y. f(x,y)$$

Note that this term uncurries the function. It is the opposite of the currying we saw in class.

(c)
$$\exists \phi. \forall \psi. \psi \implies \phi$$

Answer: *The corresponding type is*

$$\exists X. \ \forall Y. \ Y \rightarrow X$$

A term with this type is

pack { int,
$$\Lambda Y$$
. λy : Y . 42 } as $\exists X$. $\forall Y$. $Y \rightarrow X$

(d)
$$\forall \psi. \psi \implies (\forall \phi. \phi \implies \psi)$$

Answer: *The corresponding type is*

$$\forall Y. \ Y \rightarrow (\forall X. \ X \rightarrow Y)$$

A term with this type is

$$\Lambda Y. \lambda a: Y. \Lambda X. \lambda x: X. a$$

Primitive propositions in logic correspond

(e)
$$\forall \psi. (\forall \phi. \phi \implies \psi) \implies \psi$$

Answer: A corresponding type is

$$\forall Y. (\forall X. X \to Y) \to Y$$

A term with this type is

$$\Lambda Y. \ \lambda f: \forall X. \ X \rightarrow Y. \ f \ [\textbf{int}] \ 42$$

4 Existential types

(a) Write a term with type $\exists C. \{ produce : \mathbf{int} \to C, consume : C \to \mathbf{bool} \}$. Moreover, ensure that calling the function *produce* will produce a value of type C such that passing the value as an argument to *consume* will return true if and only if the argument to *produce* was 42. (Assume that you have an integer comparison operator in the language.)

Answer:

In the following solution, we use **int** as the witness type, and implement produce using the identity function, and implement consume by testing whether the value of type C (i.e., of witness type **int**) is equal to 42.

```
\textit{pack} \ \{\textit{int}, \{\textit{produce} = \lambda a \colon \textit{int}.\ a, \textit{consume} = \lambda a \colon \textit{int}.\ a = 42\ \}\} \textit{as} \ \exists C.\ \{\textit{produce} : \textit{int} \rightarrow C, \textit{consume} : C \rightarrow \textit{bool}\ \}
```

(b) Do the same as in part (a) above, but now use a different witness type.

Answer: Here's another solution where instead we use **bool** as the witness type, and implement produce by comparing the integer argument to 42, and implement consume as the identity function.

```
\textit{pack} \ \{\textit{bool}, \{ \ \textit{produce} = \lambda a \colon \textit{int}. \ a = 42, \ \textit{consume} = \lambda a \colon \textit{bool}. \ a \ \} \} \textit{as} \ \exists C. \ \{ \ \textit{produce} : \textit{int} \rightarrow C, \textit{consume} : C \rightarrow \textit{bool} \ \}
```

(c) Assuming you have a value v of type $\exists C. \{ \textit{produce} : \textbf{int} \to C, \textit{consume} : C \to \textbf{bool} \}$, use v to "produce" and "consume" a value (i.e., make sure you know how to use the unpack $\{X, x\} = e_1$ in e_2 expression.

Answer: $unpack \{D, r\} = v$ in

let d = r.produce 19 in

r.consume d