Harvard School of Engineering and Applied Sciences - CS 152: Programming Languages
 Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types
 Section and Practice Problems

Section 8

1 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing rules.)

- $\Lambda A . \lambda x: A \rightarrow$ int. 42
- $\lambda y: \forall X . X \rightarrow X .(y[$ int $]) 17$
- $\Lambda Y . \Lambda Z . \lambda f: Y \rightarrow Z . \lambda a: Y . f a$
- $\Lambda A . \Lambda B . \Lambda C . \lambda f: A \rightarrow B \rightarrow C . \lambda b: B . \lambda a: A . f a b$

Answer:

- $\Lambda A . \lambda x: A \rightarrow$ int. 42 has type

$$
\forall A .(A \rightarrow \text { int }) \rightarrow \text { int }
$$

- $\lambda y: \forall X . X \rightarrow X .(y[i n t]) 17$ has type

$$
(\forall X . X \rightarrow X) \rightarrow \text { int }
$$

- $\Lambda Y . \Lambda Z . \lambda f: Y \rightarrow Z . \lambda a: Y$. f a has type

$$
\forall Y . \forall Z .(Y \rightarrow Z) \rightarrow Y \rightarrow Z
$$

- $\Lambda A . \Lambda B . \Lambda C . \lambda f: A \rightarrow B \rightarrow C . \lambda b: B . \lambda a: A . f$ a b has type

$$
\forall A . \forall B . \forall C .(A \rightarrow B \rightarrow C) \rightarrow B \rightarrow A \rightarrow C
$$

(b) For each of the following types, write an expression with that type.

- $\forall X . X \rightarrow(X \rightarrow X)$
- $(\forall C . \forall D . C \rightarrow D) \rightarrow(\forall E$. int $\rightarrow E)$
- $\forall X . X \rightarrow(\forall Y . Y \rightarrow X)$

Answer:

- $\forall X . X \rightarrow(X \rightarrow X)$ is the type of

$$
\Lambda X . \lambda x: X . \lambda y: X . y
$$

- $(\forall C . \forall D . C \rightarrow D) \rightarrow(\forall E$. int $\rightarrow E)$ is the type of

$$
\lambda f: \forall C . \forall D . C \rightarrow D . \Lambda E . \lambda x: \text { int. }(f[\boldsymbol{i n t}][E]) x
$$

- $\forall X . X \rightarrow(\forall Y . Y \rightarrow X)$ is the type of

$$
\Lambda X . \lambda x: X . \Lambda Y . \lambda y: Y . x
$$

2 Records and Subtyping

(a) Assume that we have a language with references and records.
(i) Write an expression with type

$$
\{\text { cell }: \text { int ref, } \text { inc }: \text { unit } \rightarrow \text { int }\}
$$

such that invoking the function in the field inc will increment the contents of the reference in the field cell.

Answer: The following expression has the appropriate type.

$$
\begin{aligned}
& \text { let } x=\text { ref } 14 \text { in } \\
& \{\text { cell }=x, \text { inc }=\lambda u: \text { unit. } x:=(!x+1)\}
\end{aligned}
$$

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an expression that increments the contents of the cell twice.

Answer:

$$
\text { let } z=y . \operatorname{inc}() \text { in y.inc }()
$$

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will need to use the subsumption rule.)

$$
(\lambda x:\{\operatorname{dogs}: \text { int }, \text { cats }: \text { int }\} . x \cdot \operatorname{dog} s+x . c a t s)\{\operatorname{dogs}=2, \text { cats }=7, \text { mice }=19\}
$$

Answer:

For brevity, let $e_{1} \equiv \lambda x:\{$ dogs : int, cats : int $\left.\} . x . \operatorname{dogs}+x . c a t s\right)$ and let $e_{2} \equiv\{$ dogs $=2$, cats $=7$, mice $=19\}$. The derivation has the following form.

$$
\text { T-APP } \frac{\frac{\vdots_{1}}{\vdash e_{1}:\{\text { dogs }: \text { int }, \text { cats }: \text { int }\} \rightarrow \boldsymbol{i n t}} \quad \frac{\vdots_{2}}{\vdash e_{1} e_{2}: \boldsymbol{i n t}}}{\qquad \frac{e_{2}:\{\operatorname{dog} s: \text { int, cats }: \text { int }\}}{}}
$$

The derivation of e_{1} is straight forward:

The derivation of e_{2} requires the use of subsumption, since we need to show that $e_{2} \equiv\{\operatorname{dogs}=2$, cats $=$ 7 , mice $=19\}$ has type $\{$ dogs $:$ int, cats $:$ int $\}$.

$$
\begin{array}{cc}
\vdash 2: \text { int } \quad \vdash 7: \text { int } \quad \vdash 19: \text { int } \\
\hline \vdash\{\text { dogs }=2, \text { cats }=7, \text { mice }=19\}:\{\text { dogs }: \text { int, cats }: \text { int }, \text { mice }: \text { int }\} & \\
\qquad \vdash\{\text { dogs }=2, \text { cats }=7, \text { mice }=19\}:\{\text { dogs }: \text { int, cats }: \text { int, } \text { cats }: \text { mice }: \text { int }\}
\end{array}
$$

(c) Suppose that Γ is a typing context such that

$$
\begin{aligned}
& \Gamma(a)=\{\text { dogs }: \text { int, cats: int, } \text { mice: }: \mathbf{i n t}\} \\
& \Gamma(f)=\{\text { dogs }: \text { int }, \text { cats }: \text { int }\} \rightarrow\{\text { apples }: \text { :int, } \text { kiwis }: \text { int }\}
\end{aligned}
$$

Write an expression e that uses variables a and f and has type $\{$ apples : int $\}$ under context Γ, i.e., $\Gamma \vdash e:\{$ apples:int $\}$. Write a typing derivation for it.

[^0](d) Which of the following are subtypes of each other?
(a) $\{$ dogs:int, cats:int $\} \rightarrow\{$ apples:int $\}$
(b) $\{$ dogs:int $\} \rightarrow\{$ apples:int $\}$
(c) $\{$ dogs:int $\} \rightarrow\{$ apples:int, kiwis:int $\}$
(d) $\{$ dogs:int, cats:int, mice:int $\} \rightarrow\{$ apples: int, kiwis:int $\}$
(e) (\{apples:int $\}$) ref
(f) (\{apples:int, kiwis:int $\}$) ref
(g) (\{kiwis:int, apples:int $\}$) ref

For each such pair, make sure you have an understanding of why one is a subtype of the other (and for pairs that aren't subtypes, also make sure you understand).

Answer: Of the function types:

- (b) is a subtype of (a)
- (c) is a subtype of (b)
- (c) is a subtype of (d)
- (c) is a subtype of (a)
- (d) is not a subtype of either (a) or (b), or vice versa

The key thing is that for $\tau_{1} \rightarrow \tau_{2}$ to be a subtype of $\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$, we must be contravariant in the argument type and covariant in the result type, i.e., $\tau_{1}^{\prime} \leq \tau_{1}$ and $\tau_{2} \leq \tau_{2}^{\prime}$.
Let's consider why (b) is a subtype of (a), i.e., $\{$ dogs: int $\} \rightarrow\{$ apples: int $\} \leq\{$ dogs: int, cats: int $\} \rightarrow\{$ apples: int $\}$. Suppose we have a function f_{b} of type $\{$ dogs: int $\} \rightarrow\{$ apples: int $\}$, and we want to use it somewhere that wants a function g_{a} of type $\{$ dogs : int, cats : int $\} \rightarrow\{$ apples : int $\}$. Let's think about how g_{a} could be used: it could be given an argument of type $\{$ dogs: int, cats: int $\}$, and so f_{b} had better be able to handle any record that has the fields dogs and cats. Indeed, f_{b} can be given any value of type $\{d o g s: i n t\}$, i.e., any record that has a field dogs. So f_{b} can take any argument that g_{b} can be given The other way that a function can be used is by taking the result of applying it. The result types of the functions are the same, so we have no problem there. Here is a derivation showing the subtyping relation:

$$
\begin{aligned}
& \text { \{dogs: :int, cats: :int }\} \leq\{\text { dogs : int }\} \quad\{\text { apples }: \text { int }\} \leq\{\text { apples }: \text { int }\} \\
& \hline\{\text { dogs }: \boldsymbol{i n t}\} \rightarrow\{\text { apples }: \boldsymbol{i n t}\} \leq\{\text { dogs }: \text { int, cats: }: \text { int }\} \rightarrow\{\text { apples }: \boldsymbol{i n t}\}
\end{aligned}
$$

Let's consider why (d) is not a subtype of (a) and (a) is not a subtype of (d). (d) is not a subtype of (a) since they are not contravariant in the argument type (i.e., the argument type of (a) is not a subtype of the argument type of (d)). (a) is not a subtype of (d) since the result type of (a) is not a subtype of the result type of (d) (i.e., they are not covariant in the result type).
For the ref types:

- (f) is a subtype of (g) (and vice versa) assuming the more permissive subtyping rule for records that allows the order of fields to be changed.
- (e) is not a subtype of either (f) or (g), or vice versa.

3 Curry-Howard isomorphism

The following logical formulas are tautologies, i.e., they are true. For each tautology, state the corresponding type, and come up with a term that has the corresponding type.

For example, for the logical formula $\forall \phi \cdot \phi \Longrightarrow \phi$, the corresponding type is $\forall X . X \rightarrow X$, and a term with that type is $\Lambda X . \lambda x: X . x$. Another example: for the logical formula $\tau_{1} \wedge \tau_{2} \Longrightarrow \tau_{1}$, the corresponding type is $\tau_{1} \times \tau_{2} \rightarrow \tau_{1}$, and a term with that type is $\lambda x: \tau_{1} \times \tau_{2}$. \#1 x.

You may assume that the lambda calculus you are using for terms includes integers, functions, products, sums, universal types and existential types.
(a) $\forall \phi \cdot \forall \psi \cdot \phi \wedge \psi \Longrightarrow \psi \vee \phi$

Answer: The corresponding type is

$$
\forall X . \forall Y . X \times Y \rightarrow Y+X
$$

A term with this type is

$$
\Lambda X . \Lambda Y . \lambda x: X \times Y . \operatorname{in}_{Y+X} \# 2 x
$$

(b) $\forall \phi \cdot \forall \psi \cdot \forall \chi \cdot(\phi \wedge \psi \Longrightarrow \chi) \Longrightarrow(\phi \Longrightarrow(\psi \Longrightarrow \chi))$

Answer: The corresponding type is

$$
\forall X . \forall Y . \forall Z .(X \times Y \rightarrow Z) \rightarrow(X \rightarrow(Y \rightarrow Z))
$$

A term with this type is

$$
\Lambda X . \Lambda Y . \Lambda Z . \lambda f: X \times Y \rightarrow Z . \lambda x: X . \lambda y: Y . f(x, y)
$$

Note that this term uncurries the function. It is the opposite of the currying we saw in class.
(c) $\exists \phi \cdot \forall \psi \cdot \psi \Longrightarrow \phi$

Answer: The corresponding type is

$$
\exists X . \forall Y . Y \rightarrow X
$$

A term with this type is

$$
\text { pack }\{\text { int }, \Lambda Y . \lambda y: Y .42\} \text { as } \exists X . \forall Y . Y \rightarrow X
$$

(d) $\forall \psi \cdot \psi \Longrightarrow(\forall \phi \cdot \phi \Longrightarrow \psi)$

Answer: The corresponding type is

$$
\forall Y . Y \rightarrow(\forall X . X \rightarrow Y)
$$

A term with this type is

$$
\Lambda Y \cdot \lambda a: Y \cdot \Lambda X \cdot \lambda x: X \cdot a
$$

Primitive propositions in logic correspond
(e) $\forall \psi \cdot(\forall \phi \cdot \phi \Longrightarrow \psi) \Longrightarrow \psi$

Answer: A corresponding type is

$$
\forall Y .(\forall X . X \rightarrow Y) \rightarrow Y
$$

A term with this type is

$$
\Lambda Y . \lambda f: \forall X . X \rightarrow Y . f[\text { int }] 42
$$

4 Existential types

(a) Write a term with type $\exists C$. $\{$ produce : int $\rightarrow C$, consume : $C \rightarrow$ bool $\}$. Moreover, ensure that calling the function produce will produce a value of type C such that passing the value as an argument to consume will return true if and only if the argument to produce was 42 . (Assume that you have an integer comparison operator in the language.)

Answer:

In the following solution, we use int as the witness type, and implement produce using the identity function, and implement consume by testing whether the value of type C (i.e., of witness type int) is equal to 42 .
pack $\{$ int, $\{$ produce $=\lambda a:$ int. a, consume $=\lambda a:$ int. $a=42\}\}$
as $\exists C$. $\{$ produce : int $\rightarrow C$, consume : $C \rightarrow$ bool $\}$
(b) Do the same as in part (a) above, but now use a different witness type.

Answer: Here's another solution where instead we use bool as the witness type, and implement produce by comparing the integer argument to 42 , and implement consume as the identity function.

```
pack {bool, { produce = \lambdaa:int. }a=42,\mathrm{ consume = \a:bool. }a}
as \existsC. { produce: int }->C\mathrm{ , consume : C }->\mathrm{ bool }
```

(c) Assuming you have a value v of type $\exists C$. \{ produce : int $\rightarrow C$, consume : $C \rightarrow$ bool \}, use v to "produce" and "consume" a value (i.e., make sure you know how to use the unpack $\{X, x\}=e_{1}$ in e_{2} expression.

```
Answer: unpack {D,r}=v in
    let d = r.produce 19 in
    r.consume d
```


[^0]: Answer: A suitable expressions is $f a$. Note that f is a function that expects an expression of type \{dogs : int, cats : int $\}$ as an argument. Variable a is of type \{dogs :int, cats: int, mice : int $\}$, which is a subtype, so we can use a as an argument to f.
 Function f returns a value of type \{apples: int, kiwis: int $\}$ but our expression e needs to return a value of type \{apples: int $\}$. But \{apples: int, kiwis: int $\}$ is a subtype of \{apples: int $\}$, so it works out.
 Here is a typing derivation for it. We abbreviate type \{dogs : int, cats: int, mice : int $\}$ to DCM and abbreviate type $\{$ dogs : int, cats: int $\}$ to DC.
 Which of the inference rules are uses of subsumption? Some of the derivations have been elided. Fill them in.

