
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Type Inference
Section and Practice Problems

Section 9

1 Type Inference

(a) Recall the constraint-based typing judgment Γ ` e :τ .C. Give inference rules for products and sums.
That is, for the following expressions.

• (e1, e2)

• #1 e

• #2 e

• inlτ1+τ2 e

• inrτ1+τ2 e

• case e1 of e2 | e3

Answer:

Note that in all of the rules below except for the rule for pairs (e1, e2), the types in the premise and conclusion are
connected only through constraints. The reason for this is the same as in the typing rule for function application,
and for addition: we may not be able to derive that the premise has the appropriate type, e.g., for a projection
#1 e, we may not be able to derive that Γ ` e :τ1× τ2 .C. We instead use constraints to ensure that the derived
type is appropriate.

Γ ` e1 :τ1 . C1 Γ ` e2 :τ2 . C2

Γ ` (e1, e2) :τ1 × τ2 . C1 ∪ C2

Γ ` e :τ . C

Γ ` #1 e :X . C ∪ {τ ≡ X × Y }
X,Y are fresh

Γ ` e :τ . C

Γ ` #2 e :Y . C ∪ {τ ≡ X × Y }
X,Y are fresh

Γ ` e :τ . C

Γ ` inlτ1+τ2 e :τ1 + τ2 . C ∪ {τ ≡ τ1}
Γ ` e :τ . C

Γ ` inrτ1+τ2 e :τ1 + τ2 . C ∪ {τ ≡ τ2}

Γ ` e1 :τ1 . C1 Γ ` e2 :τ2 . C2 Γ ` e3 :τ3 . C3

Γ ` case e1 of e2 | e3 :Z . C1 ∪ C2 ∪ C3 ∪ {τ1 ≡ X + Y, τ2 ≡ X → Z, τ3 ≡ Y → Z}
X,Y, Z are fresh

(b) Determine a set of constraints C and type τ such that

` λx :A. λy :B. (#1 y) + (x (#2 y)) + (x 2) :τ . C

and give the derivation for it.



Type Inference
Section and Practice Problems

Answer:

C = {B ≡ X × Y , X ≡ int , B ≡ Z ×W , A ≡W → U , U ≡ int , A ≡ int→ V , V ≡ int}
τ ≡ A→ B → int

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset
a really really big derivation).

The expression #1 y requires us to add a constraint that the type of y (i.e., B) is equal to a product type for
some fresh variables X and Y , thus constraint B ≡ X × Y . (And expression #1 y has type X .)

The expression (#2 y) similarly requires us to add a constraint that the type of y (i.e., B) is equal to a product
type for some fresh variables Z and W , thus constraint B ≡ Z ×W . (And expression #2 y has type W .)

The expression x (#2 y) requires us to add a constraint that unifies the type of x (i.e., A) with a function type
W → U (where W is the type of #2 y and U is a fresh type variable).

The expression x 2 requires us to add a constraint that unifies the type of x (i.e.,A) with a function type int→ V
(where int is the type of expression 2 and V is a fresh type).

The addition operations leads us to add constraintsX ≡ int, U ≡ int, and V ≡ int (i.e., the types of expressions
(#1 y), (x (#2 y)) and (x 2) must all unify with int.

(c) Recall the unification algorithm from Lecture 16. What is the result of unify(C) for the set of con-
straints C from Question 1(b) above?

Answer: The result is a substitution equivalent to

[A 7→ int→ int , B 7→ int× int , X 7→ int , Y 7→ int , Z 7→ int , W 7→ int , U 7→ int , V 7→ int]

Page 2 of 2


