Harvard School of Engineering and Applied Sciences - CS 152: Programming Languages
 Type Inference
 Section and Practice Problems

Section 9

1 Type Inference

(a) Recall the constraint-based typing judgment $\Gamma \vdash e: \tau \triangleright C$. Give inference rules for products and sums. That is, for the following expressions.

- $\left(e_{1}, e_{2}\right)$
- \#1e
- \#2e
- $\mathrm{inl}_{\tau_{1}+\tau_{2}} e$
- $\operatorname{inr}_{\tau_{1}+\tau_{2}} e$
- case e_{1} of $e_{2} \mid e_{3}$

Answer:

Note that in all of the rules below except for the rule for pairs $\left(e_{1}, e_{2}\right)$, the types in the premise and conclusion are connected only through constraints. The reason for this is the same as in the typing rule for function application, and for addition: we may not be able to derive that the premise has the appropriate type, e.g., for a projection $\# 1 e$, we may not be able to derive that $\Gamma \vdash e: \tau_{1} \times \tau_{2} \triangleright C$. We instead use constraints to ensure that the derived type is appropriate.

$$
\begin{aligned}
& \frac{\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \quad \Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} \times \tau_{2} \triangleright C_{1} \cup C_{2}} \\
& \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \# 1 e: X \triangleright C \cup\{\tau \equiv X \times Y\}} X, Y \text { are fresh } \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \# 2 e: Y \triangleright C \cup\{\tau \equiv X \times Y\}} X, Y \text { are fresh } \\
& \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \operatorname{inl}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \triangleright C \cup\left\{\tau \equiv \tau_{1}\right\}} \\
& \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \operatorname{inr}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \triangleright C \cup\left\{\tau \equiv \tau_{2}\right\}} \\
& \frac{\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \quad \Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2} \quad \Gamma \vdash e_{3}: \tau_{3} \triangleright C_{3}}{\Gamma \vdash \text { case } e_{1} \text { of } e_{2} \mid e_{3}: Z \triangleright C_{1} \cup C_{2} \cup C_{3} \cup\left\{\tau_{1} \equiv X+Y, \tau_{2} \equiv X \rightarrow Z, \tau_{3} \equiv Y \rightarrow Z\right\}} X, Y, Z \text { are fresh }
\end{aligned}
$$

(b) Determine a set of constraints C and type τ such that

$$
\vdash \quad \lambda x: A \cdot \lambda y: B \cdot(\# 1 y)+(x(\# 2 y))+(x 2): \tau \triangleright C
$$

and give the derivation for it.

Answer:

$$
\begin{aligned}
& C=\{B \equiv X \times Y, X \equiv \mathbf{i n t}, B \equiv Z \times W, A \equiv W \rightarrow U, U \equiv \text { int }, A \equiv \text { int } \rightarrow V, V \equiv \boldsymbol{i n t}\} \\
& \tau \equiv A \rightarrow B \rightarrow \mathbf{i n t}
\end{aligned}
$$

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset a really really big derivation).
The expression $\# 1 y$ requires u s to add a constraint that the type of y (i.e., B) is equal to a product type for some fresh variables X and Y, thus constraint $B \equiv X \times Y$. (And expression $\# 1 y$ has type X.)
The expression ($\# 2 y$) similarly requires us to add a constraint that the type of y (i.e., B) is equal to a product type for some fresh variables Z and W, thus constraint $B \equiv Z \times W$. (And expression $\# 2 y$ has type W.)
The expression $x(\# 2 y)$ requires us to add a constraint that unifies the type of x (i.e., A) with a function type $W \rightarrow U$ (where W is the type of $\# 2 y$ and U is a fresh type variable).
The expression $x 2$ requires us to add a constraint that unifies the type of x (i.e., A) with a function type int $\rightarrow V$ (where int is the type of expression 2 and V is a fresh type).
The addition operations leads us to add constraints $X \equiv \boldsymbol{i n t}, U \equiv \boldsymbol{i n t}$, and $V \equiv \boldsymbol{i n t}$ (i.e., the types of expressions (\#1 y), ($x(\# 2 y)$) and ($x 2$) must all unify with int.
(c) Recall the unification algorithm from Lecture 16. What is the result of unify (C) for the set of constraints C from Question 1(b) above?

Answer: The result is a substitution equivalent to
$[A \mapsto$ int \rightarrow int,$B \mapsto \mathbf{i n t} \times$ int $, X \mapsto \mathbf{i n t}, Y \mapsto \mathbf{i n t}, Z \mapsto \mathbf{i n t}, W \mapsto$ int $, U \mapsto \mathbf{i n t}, V \mapsto \mathbf{i n t}]$

