Large-step semantics

1 Large-step semantics

So far we have defined the small step evaluation relation $\longrightarrow \subseteq$ Config \times Config for our simple language of arithmetic expressions, and used its transitive and reflexive closure \longrightarrow^{*} to describe the execution of multiple steps of evaluation. In particular, if $\langle e, \sigma\rangle$ is some start configuration, and $\left\langle n, \sigma^{\prime}\right\rangle$ is a final configuration, the evaluation $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ shows that by executing expression e starting with the store σ, we get the result n, and the final store σ^{\prime}.

Large-step semantics is an alternative way to specify the operational semantics of a language. Large-step semantics directly give the final result.

We'll use the same configurations as before, but define a large step evaluation relation:

$$
\Downarrow \subseteq \text { Config } \times \text { FinalConfig }
$$

where

$$
\begin{aligned}
\text { Config } & =\operatorname{Exp} \times \text { Store } \\
\text { and FinalConfig } & =\text { Int } \times \text { Store } \subseteq \text { Config. }
\end{aligned}
$$

We write $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$ to mean that $\left(\langle e, \sigma\rangle,\left\langle n, \sigma^{\prime}\right\rangle\right) \in \Downarrow$. In other words, configuration $\langle e, \sigma\rangle$ evaluates in one big step directly to final configuration $\left\langle n, \sigma^{\prime}\right\rangle$. In general, the big step semantics takes a configuration to an "answer". For our language of arithmetic expressions, "answers" are a subset of configurations, but in general the "answer" to a computation might be something other than a configuration.

The large step semantics boils down to defining the relation \Downarrow. We use inference rules to inductively define the relation \Downarrow, similar to how we specified the small-step operational semantics \longrightarrow.

$$
\mathrm{INT}_{\mathrm{LRG}} \overline{\langle n, \sigma\rangle \Downarrow\langle n, \sigma\rangle} \quad \operatorname{VAR}_{\mathrm{LRG}} \overline{\langle x, \sigma\rangle \Downarrow\langle n, \sigma\rangle} \text { where } \sigma(x)=n
$$

$$
\begin{gathered}
\operatorname{ADD}_{\mathrm{LRG}} \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle \quad\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}{\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle} \text { where } n \text { is the sum of } n_{1} \text { and } n_{2} \\
\operatorname{MUL}_{\text {LRG }} \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle \quad\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}{\left\langle e_{1} \times e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle} \text { where } n \text { is the product of } n_{1} \text { and } n_{2} \\
\operatorname{ASG}_{\mathrm{LRG}} \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle \quad\left\langle e_{2}, \sigma^{\prime \prime}\left[x \mapsto n_{1}\right]\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}{\left\langle x:=e_{1} ; e_{2}, \sigma\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle}
\end{gathered}
$$

To see how we use these rules, here is a proof tree that shows that $\langle\mathrm{foo}:=3$; foo \times bar, $\sigma\rangle \Downarrow\left\langle 21, \sigma^{\prime}\right\rangle$ for a store σ such that $\sigma(\mathrm{bar})=7$, and $\sigma^{\prime}=\sigma[\mathrm{foo} \mapsto 3]$.

A closer look to this structure reveals the relation between small step and large-step evaluation: a depthfirst traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

2 Equivalence of semantics

So far, we have specified the semantics of our language of arithmetic expressions in two different ways: small-step operational semantics and large-step operational semantics. Are they expressing the same meaning of arithmetic expressions? Can we show that they express the same thing?

Theorem (Equivalence of semantics). For all expressions e, stores σ and σ^{\prime}, and integers n, we have:

$$
\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longleftrightarrow\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle
$$

Proof sketch.

- \Longrightarrow. We proceed by structural induction on expressions e. The property we will prove by induction is:

$$
P(e)=\forall \sigma, \sigma^{\prime} \in \text { Store. , } \forall n \in \text { Int. }\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle
$$

We have to consider each of the possible axioms and inference rules for constructing an expression.

- Case $e \equiv x$.

Here, we are considering the case where the expression e is equal to some variable x. Assume that for some σ, σ^{\prime}, and n we have $\langle x, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. That means that there is some derivation using the axioms and inference rules of the large-step operational semantics, whose conclusion is $\langle x, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. There is only one rule whose conclusion could look like this, the rule $\operatorname{Var}_{\text {Lrg }}$. That rule requires that $n=\sigma(x)$, and that $\sigma^{\prime}=\sigma$.
(This reasoning is an example of inversion: using the inference rules in reverse. That is, we know that some conclusion holds- $\langle x, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$ —and we examine the inference rules to determine which rule must have been used in the derivation, and thus which premises must be true, and which side conditions satisfied.)
Since $n=\sigma(x)$ we know that $\langle x, \sigma\rangle \longrightarrow\langle n, \sigma\rangle$ also holds, by using the small-step axiom VAR. So we can conclude that $\langle x, \sigma\rangle \longrightarrow^{*}\langle n, \sigma\rangle$ holds, which is what we needed to show.

- Case $e \equiv n$.

Here, we consider the case where expression e is equal to some integer n. Assume that for some σ, σ^{\prime}, and n^{\prime} we have $\langle n, \sigma\rangle \Downarrow\left\langle n^{\prime}, \sigma^{\prime}\right\rangle$. Like the case above, by inversion, we know that the rule Int $_{\text {Lrg }}$ was used to conclude that $\langle n, \sigma\rangle \Downarrow\left\langle n^{\prime}, \sigma^{\prime}\right\rangle$, and so $n^{\prime}=n$ and $\sigma^{\prime}=\sigma$.
So we need to show that $\langle n, \sigma\rangle \longrightarrow^{*}\langle n, \sigma\rangle$. But this holds trivially because of reflexivity of \longrightarrow^{*}.

- Case $e \equiv e_{1}+e_{2}$.

This is an inductive case. Expressions e_{1} and e_{2} are subexpressions of e, and so we can assume that $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ hold. We need to show that $P(e)$ holds. Let's write out $P\left(e_{1}\right), P\left(e_{2}\right)$, and $P(e)$ explicitly.

$$
\begin{aligned}
P\left(e_{1}\right) & =\forall n, \sigma, \sigma^{\prime}:\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\left\langle e_{1}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle \\
P\left(e_{2}\right) & =\forall n, \sigma, \sigma^{\prime}:\left\langle e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\left\langle e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle \\
P(e) & =\forall n, \sigma, \sigma^{\prime}:\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle \Longrightarrow\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle
\end{aligned}
$$

Assume that for some σ, σ^{\prime} and n we have $\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. We now need to show that $\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$.
We assumed that $\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. Let's use inversion again: there is some derivation whose conclusion is $\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. By looking at the large-step semantic rules, we see that only one rule could possible have a conclusion of this form: the rule $\mathrm{ADD}_{\mathrm{Lrg}}$. So that means that
 be the case that $\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$ and $\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle$ hold for some n_{1} and n_{2} such that $n=n_{1}+n_{2}$ (i.e., there is a derivation whose conclusion is $\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$ and a derivation whose conclusion is $\left.\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma^{\prime}\right\rangle\right)$.
Using the inductive hypothesis $P\left(e_{1}\right)$, since $\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$, we must have $\left\langle e_{1}, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$. Similarly, by $P\left(e_{2}\right)$, we have $\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \longrightarrow^{*}\left\langle n_{2}, \sigma\right\rangle$. By Lemma 1 below, we have

$$
\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1}+e_{2}, \sigma^{\prime \prime}\right\rangle
$$

and by another application of Lemma 1 we have

$$
\left\langle n_{1}+e_{2}, \sigma^{\prime \prime}\right\rangle \longrightarrow^{*}\left\langle n_{1}+n_{2}, \sigma^{\prime}\right\rangle
$$

and by the rule ADD we have

$$
\left\langle n_{1}+n_{2}, \sigma^{\prime}\right\rangle \longrightarrow\left\langle n, \sigma^{\prime}\right\rangle .
$$

Thus, we have $\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$, which proves this case.

- Case $e \equiv e_{1} \times e_{2}$. Similar to the case $e=e_{1}+e_{2}$ above.
- Case $e \equiv x:=e_{1} ; e_{2}$. Omitted. Try it as an exercise.
$\bullet \Longleftarrow$. We proceed by mathematical induction on the number of steps $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$.
- Base case. If $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ in zero steps, then we must have $e \equiv n$ and $\sigma^{\prime}=\sigma$. Then, $\langle n, \sigma\rangle \Downarrow\langle n, \sigma\rangle$ by the large-step operational semantics rule $\mathrm{INT}_{\mathrm{Lrg}}$.
- Inductive case. Assume that $\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$, and that (the inductive hypothesis) $\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. That is, $\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ takes m steps, and we assume that the property holds for it $\left(\left\langle e^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle\right)$, and we are considering $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$, which takes $m+1$ steps. We need to show that $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. This follows immediately from Lemma 2 below.

Lemma 1. If $\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$ then for all n_{1}, e_{2} the following hold.

- $\left\langle e+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n+e_{2}, \sigma^{\prime}\right\rangle$
- $\left\langle e \times e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n \times e_{2}, \sigma^{\prime}\right\rangle$
- $\left\langle n_{1}+e, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1}+n, \sigma^{\prime}\right\rangle$
- $\left\langle n_{1} \times e, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1} \times n, \sigma^{\prime}\right\rangle$

Proof. By (mathematical) induction on the number of evaluation steps in \longrightarrow^{*}.
Lemma 2. For all e, e^{\prime}, σ, and n, if $\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime \prime}\right\rangle$ and $\left\langle e^{\prime}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$, then $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$.

2.1 Again: structural induction vs rule induction

Like in the previous lecture, here we can also prove that large-step evaluation implies small-step evaluation by induction on the large-step derivation rather than structural induction on the expression.
\Longrightarrow. We proceed by induction on the derivation of $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. The property we wish to show is

$$
P\left(\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle\right)=\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle
$$

Suppose we have a derivation of $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$ for some e, σ, n, and σ^{\prime}. Assume that the inductive hypothesis holds for any subderivation $\left\langle e_{0}, \sigma_{0}\right\rangle \Downarrow\left\langle n_{0}, \sigma_{0}^{\prime}\right\rangle$ used in the derivation of $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$. Consider the last rule used in the derivation of $\langle e, \sigma\rangle \Downarrow\left\langle n, \sigma^{\prime}\right\rangle$.

- $\mathrm{INT}_{\mathrm{Lrg}}$. Here, $e \equiv n$ and $\sigma^{\prime}=\sigma$. The result holds trivially, as $\langle n, \sigma\rangle \longrightarrow^{*}\langle n, \sigma\rangle$.
- $\operatorname{VAR}_{\mathrm{LRG}}$. Here $e \equiv x$ for some variable x, and $\sigma^{\prime}=\sigma$ and $n=\sigma(x)$. Using the small step rule VAR, we can derive $\langle x, \sigma\rangle \longrightarrow\langle n, \sigma\rangle$, and thus $\langle x, \sigma\rangle \longrightarrow^{*}\langle n, \sigma\rangle$.
- $\operatorname{ADD}_{\text {Lrg }}$. Here $e \equiv e_{1}+e_{2}$ for some expressions e_{1} and e_{2}, and $n=n_{1}+n_{2}$ for some n_{1} and n_{2}, and we have derivations for $\left\langle e_{1}, \sigma\right\rangle \Downarrow\left\langle n_{1}, \sigma^{\prime \prime}\right\rangle$ and $\left\langle e_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow\left\langle n_{2}, \sigma_{1}\right\rangle$.
By Lemma 1, we have

$$
\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n_{1}+e_{2}, \sigma^{\prime \prime}\right\rangle
$$

and by another application of Lemma 1 we have

$$
\left\langle n_{1}+e_{2}, \sigma^{\prime \prime}\right\rangle \longrightarrow \longrightarrow^{*}\left\langle n_{1}+n_{2}, \sigma^{\prime}\right\rangle
$$

and by the rule ADD we have

$$
\left\langle n_{1}+n_{2}, \sigma^{\prime}\right\rangle \longrightarrow\left\langle n, \sigma^{\prime}\right\rangle
$$

Thus, we have $\left\langle e_{1}+e_{2}, \sigma\right\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle$, which proves this case.

- Mul ${ }_{\text {Lrg }}$. Similar to the case $\mathrm{ADD}_{\mathrm{Lrg}}$ above.
- ASG $_{\text {Lrg }}$. Omitted. Try it as an exercise.

