
Introduction
CS 152 (Spring 2024)

Harvard University

Tuesday, January 23, 2024



Programming Languages

▶ More than a catalog of languages and what
they can be used for.

▶ In this class: foundations of programming
languages, the underlying concepts and
principles that go into designing and
implementing programming languages.

▶ How can you learn new languages? How can
you design effective languages?



Why?

▶ give you the concepts to more easily learn new
languages

▶ ... and to design and implement new languages

▶ golden age of PL

▶ elegant math



Aspects of a Language

syntax the structure of its programs

semantics the meaning of its programs



A formal semantics...

▶ can be simpler than an implementation,
more precise than intuition

▶ can answer: is this implementation correct
▶ supports the definition of analyses and

transformations
▶ prove properties about the language
▶ prove properties about programs written in the

language

▶ promotes better language design
▶ better understand impact on design decisions
▶ apply semantic insights to improve language



Cool: Type safety



Example: Rust

Rust is memory safe (no deferencing of null
pointers, no dangling pointers), but performance is
comparable to C and C++. Lots of memory
checking is done statically. Achieves this using a
sophisticated type system, with parametric
polymorphism and linear types. All at compile time,
with no run-time overhead.



Cool: Certified compilers

▶ Formal proof that the native code output by
CompCert has the same semantics as the
original C program.

▶ Researchers found zero bugs in the verified part
of CompCert vs hundreds of bugs in LLVM and
GCC.



Cool: Program Synthesis



Cool: Program Verification



Cool: Differentiable Programming



Cool: Probabilistic Programming



ToC

▶ semantics

▶ lambda calculus

▶ types

▶ reasoning about programs

▶ misc. topics



Semantics of Programming Languages

Give mathematical meaning to programs.



Why mathematical?

▶ Less ambiguous.

▶ More concise.

▶ Formal arguments.



Semantics



Styles of Semantics

Operational Semantics

Denotational Semantics

Axiomatic Semantics

Algebraic Semantics



Operational Semantics

Small-Step

Large-Step



Small-Step Operational Semantics

step from configuration to configuration:

c0 −→ c1 −→ . . . −→ cn



Large-Step Operational Semantics

one step from initial configuration to final answer:

c ⇓ a



Denotational Semantics

interpret in mathematical domain

[[term]] = number

[[e1 + e2]] = [[e1]] + [[e2]]

. . .



Axiomatic Semantics

{Pre} c {Post}



Algebraic Semantics



Abstract Syntax



Abstract Syntax

x , y , z ∈ Var

n,m ∈ Int

e ∈ Exp



Abstract Syntax

x , y , z ∈ Var

Var is the set of program variables (e.g.,
foo, bar, baz, i, etc.).



Abstract Syntax

n,m ∈ Int

Int is the set of constant integers (e.g.,
42, −40, 7).



Abstract Syntax

e ∈ Exp

Exp is the domain of expressions, which we specify
using a BNF (Backus-Naur Form) grammar.



Simple Expressions

e ::= x

| n
| e1 + e2
| e1 × e2



Abstract Syntax Tree

1 + 2× 3

+

/ \

1 *

/ \

2 3

*

/ \

+ 3

/ \

1 2



Abstract Syntax Tree

1 + 2× 3

+

/ \

1 *

/ \

2 3

1 + (2× 3)

*

/ \

+ 3

/ \

1 2

(1 + 2)× 3



Abstract Syntax Tree

1 + 2× 3

+

/ \

1 *

/ \

2 3

1 + (2× 3)

*

/ \

+ 3

/ \

1 2

(1 + 2)× 3



Abstract Syntax Tree

1 + 2× 3

+

/ \

1 *

/ \

2 3

1 + (2× 3)

*

/ \

+ 3

/ \

1 2

(1 + 2)× 3



Def. and Use of Abstract Syntax

▶ in OCaml

▶ in Coq

▶ in Dafny


