Induction

CS 152 (Spring 2024)

Harvard University

Tuesday, January 30, 2024

Today, we learn to

- define an inductive set
- derive the induction principle of an inductive set
- prove properties of programs by induction
- use Coq to check our proofs
- believe in induction!

Expressing Program Properties

Progress

$$\forall e \in \mathsf{Exp}. \ \forall \sigma \in \mathsf{Store}.$$

either
$$e \in \mathbf{Int}$$
 or $\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >$

Termination

$$\forall e \in \mathsf{Exp}. \ \forall \sigma_0 \in \mathsf{Store}. \ \exists \sigma \in \mathsf{Store}. \ \exists n \in \mathsf{Int}.$$
 $< e, \sigma_0 > \longrightarrow^* < n, \sigma >$

Deterministic Result

$$\forall e \in \mathbf{Exp}. \ \forall \sigma_0, \sigma, \sigma' \in \mathbf{Store}. \ \forall n, n' \in \mathbf{Int}.$$
if $\langle e, \sigma_0 \rangle \longrightarrow^* \langle n, \sigma \rangle$ and
 $\langle e, \sigma_0 \rangle \longrightarrow^* \langle n', \sigma' \rangle$ then
 $n = n' \text{ and } \sigma = \sigma'.$

Inductive Sets

Inductive Set: Definition

Axiom:

$$a \in A$$

Inductive Rule:

$$a_1 \in A$$
 ... $a_n \in A$

Grammar for **Exp**

$$e ::= x \mid n \mid e_1 + e_2 \mid e_1 \times e_2 \mid x := e_1; e_2$$

Inductive Set **Exp**

$$VAR \frac{1}{x \in Exp} x \in Var$$
 $INT \frac{1}{n \in Exp} n \in Int$

$$ADD \frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{e_1 + e_2 \in \mathsf{Exp}}$$

$$ext{MUL} rac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{e_1 imes e_2 \in \mathsf{Exp}}$$

$$\operatorname{Asg} \frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{x := e_1; e_2 \in \mathsf{Exp}} x \in \mathsf{Var}$$

Grammar Equivalent to Inductive Set

$$e ::= x \mid n \mid e_1 + e_2 \mid e_1 \times e_2 \mid x := e_1; e_2$$
 $VAR = \frac{1}{x \in Exp} x \in Var \qquad INT = \frac{1}{n \in Exp} n \in Int$

$$ADD = \frac{e_1 \in Exp}{e_1 + e_2 \in Exp}$$

$$MUL = \frac{e_1 \in Exp}{e_1 \times e_2 \in Exp}$$

$$e_1 \in Exp$$

$$\operatorname{Asg} \frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{x := e_1; e_2 \in \mathsf{Exp}} x \in \mathsf{Var}$$

Inductive Set **Exp**: Example Derivation

$$\mathrm{MUL} \frac{\mathrm{ADD} \frac{\mathrm{VAR} - \mathrm{foo} \in \mathbf{Exp}}{\mathrm{foo} \in \mathbf{Exp}} \quad \mathrm{INT} - \mathrm{3} \in \mathbf{Exp}}{(\mathrm{foo} + 3) \in \mathbf{Exp}} \quad \mathrm{VAR} - \mathrm{bar} \in \mathbf{Exp}}{(\mathrm{foo} + 3) \times \mathrm{bar} \in \mathbf{Exp}}$$

Inductive Set N (Natural Numbers)

The natural numbers can be inductively defined:

$$\frac{n \in \mathbb{N}}{0 \in \mathbb{N}} \qquad \frac{n \in \mathbb{N}}{succ(n) \in \mathbb{N}}$$

where succ(n) is the successor of n.

Inductive Set \longrightarrow (Step Relation)

The small-step evaluation relation \longrightarrow is an inductively defined set. The definition of this set is given by the semantic rules.

Inductive Set \longrightarrow^* (Multi-Step Rel.)

$$< e, \sigma > \longrightarrow^* < e, \sigma >$$

$$< e, \sigma > \longrightarrow < e', \sigma' > \qquad < e', \sigma' > \longrightarrow^* < e'', \sigma'' >$$
 $< e, \sigma > \longrightarrow^* < e'', \sigma'' >$

Inductive Set \longrightarrow^* (Multi-Step Rel.)

$$< e, \sigma > \longrightarrow^* < e, \sigma >$$

$$\frac{\langle e', \sigma' \rangle \longrightarrow^* \langle e'', \sigma'' \rangle}{\langle e, \sigma \rangle \longrightarrow^* \langle e'', \sigma'' \rangle} \text{ where } \langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$$

Inductive proofs

Mathematical induction

Mathematical induction

For any property P, **If**

- ► *P*(0) holds
 - For all natural numbers n, if P(n) holds then P(n+1) holds

then for all natural numbers k, P(k) holds.

Mathematical induction

$$\frac{n \in \mathbb{N}}{0 \in \mathbb{N}} \qquad \frac{n \in \mathbb{N}}{succ(n) \in \mathbb{N}}$$

For any property P,

lf

- ► *P*(0) holds
- For all natural numbers n, if P(n) holds then P(n+1) holds

then for all natural numbers k, P(k) holds.

Mathematical inductive reasoning principle

$\overline{P(0)}$
$\overline{P(1)}$
P(2)
P(3)
P(4)
P(5)

Mathematical inductive reasoning principle

$\overline{0\in\mathbb{N}}$	$\overline{P(0)}$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\overline{P(1)}$
$2\in\mathbb{N}$	P(2)
$\overline{3\in\mathbb{N}}$	P(3)
•••	•••
$k \in \mathbb{N}$	P(k)

Induction on inductively-defined sets

Induction on inductively-defined sets

For any property P,

lf

▶ Base cases: For each axiom

$$\overline{a \in A}$$
,

- P(a) holds.
- ▶ Inductive cases: For each inference rule

$$a_1 \in A \quad \dots \quad a_n \in A$$

$$a \in A$$

if $P(a_1)$ and ... and $P(a_n)$ then P(a). **then** for all $a \in A$, P(a) holds.

Inductive reasoning principle for set **Exp**

For any property P, **If**

- For all variables x, P(x) holds.
- For all integers n, P(n) holds.
- For all $e_1 \in \mathbf{Exp}$ and $e_2 \in \mathbf{Exp}$, if $P(e_1)$ and $P(e_2)$ then $P(e_1 + e_2)$ holds.
- For all $e_1 \in \mathbf{Exp}$ and $e_2 \in \mathbf{Exp}$, if $P(e_1)$ and $P(e_2)$ then $P(e_1 \times e_2)$ holds.
- For all variables x and $e_1 \in \mathbf{Exp}$ and $e_2 \in \mathbf{Exp}$, if $P(e_1)$ and $P(e_2)$ then $P(x := e_1; e_2)$ holds.

then for all $e \in Exp$, P(e) holds.

Case INT

INT
$$n \in \mathsf{Exp}$$
 $n \in \mathsf{Int}$

For all integers n, P(n) holds

Case ADD

$$\mathrm{Add}\,\frac{e_1\in\mathsf{Exp}\quad e_2\in\mathsf{Exp}}{e_1+e_2\in\mathsf{Exp}}$$

For all $e_1 \in \mathbf{Exp}$ and $e_2 \in \mathbf{Exp}$, if $P(e_1)$ and $P(e_2)$ then $P(e_1 + e_2)$ holds.

Inductive reasoning principle for set \longrightarrow

For any property P, **If**

- \triangleright VAR: For all variables x, stores σ and integers n such that $\sigma(x) = n$, $P(\langle x, \sigma \rangle \rightarrow \langle n, \sigma \rangle)$ holds.
- ADD: For all integers n, m, p such that p = n + m, and stores σ , $P(\langle n + m, \sigma \rangle \longrightarrow \langle p, \sigma \rangle)$
- ▶ MUL: For all integers n, m, p such that $p = n \times m$, and stores σ , $P(\langle n \times m, \sigma \rangle \longrightarrow \langle p, \sigma \rangle)$ holds.
- Asg: For all variables x, integers n and expressions $e \in \text{Exp}$, $P(< x := n; e, \sigma > \longrightarrow < e, \sigma[x \mapsto n] >)$ holds.
- LADD: For all expressions $e_1, e_2, e_1' \in \mathbf{Exp}$ and stores σ and σ' , if $P(< e_1, \sigma > \longrightarrow < e_1', \sigma' >)$ holds then $P(< e_1 + e_2, \sigma > \longrightarrow < e_1' + e_2, \sigma' >)$ holds.
- ▶ RADD: For all integers n, expressions $e_2, e_2' \in \mathbf{Exp}$ and stores σ and σ' , if $P(\langle e_2, \sigma > \longrightarrow \langle e_2', \sigma' >)$ holds then $P(\langle n + e_2, \sigma > \longrightarrow \langle n + e_2', \sigma' >)$ holds.
- LMUL: For all expressions $e_1, e_2, e_1' \in \mathbf{Exp}$ and stores σ and σ' , if $P(< e_1, \sigma > \longrightarrow < e_1', \sigma' >)$ holds then $P(< e_1 \times e_2, \sigma > \longrightarrow < e_1' \times e_2, \sigma' >)$ holds.
- RMUL: For all integers n, expressions $e_2, e_2' \in \text{Exp}$ and stores σ and σ' , if $P(\langle e_2, \sigma \rangle \longrightarrow \langle e_2', \sigma' \rangle)$ holds then $P(\langle n \times e_2, \sigma \rangle \longrightarrow \langle n \times e_2', \sigma' \rangle)$ holds.
- Asg1: For all variables x, expressions $e_1, e_2, e_1' \in \mathbf{Exp}$ and stores σ and σ' , if $P(< e_1, \sigma > \longrightarrow < e_1', \sigma' >)$ holds then $P(< x := e_1; e_2, \sigma > \longrightarrow < x := e_1'; e_2, \sigma' >)$ holds.

then for all
$$\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$$
, $P(\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle)$ holds.

Proving progress

Progress (Statement)

Progress: For each store σ and expression e that is not an integer, there exists a possible transition for $\langle e, \sigma \rangle$:

$$\forall e \in \mathsf{Exp}. \ \forall \sigma \in \mathsf{Store}.$$
 either $e \in \mathsf{Int}$ or $\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >$

Progress (Rephrased)

$$P(e) = \forall \sigma. (e \in Int) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >)$$

Progress (Rephrased)

$$\forall e \in \mathsf{Exp}. \ \forall \sigma \in \mathsf{Store}.$$
 either $e \in \mathsf{Int}$ or $\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >$

$$P(e) = \forall \sigma. (e \in Int) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >)$$

Example: Proving progress

by "structural induction on the expressions e"

We will prove by structural induction on expressions **Exp** that for all expressions $e \in \mathbf{Exp}$ we have

$$P(e) = \forall \sigma. (e \in Int) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >).$$

Consider the possible cases for *e*.

Proving progress: Case e = x

By the VAR axiom, we can evaluate $< x, \sigma >$ in any state: $< x, \sigma > \longrightarrow < n, \sigma >$, where $n = \sigma(x)$. So e' = n is a witness that there exists e' such that $< x, \sigma > \longrightarrow < e', \sigma >$, and P(x) holds.

Proving progress: Case e = x

VAR
$$\xrightarrow{\langle x, \sigma \rangle \longrightarrow \langle n, \sigma \rangle}$$
 where $n = \sigma(x)$

By the VAR axiom, we can evaluate $< x, \sigma >$ in any state: $< x, \sigma > \longrightarrow < n, \sigma >$, where $n = \sigma(x)$. So e' = n is a witness that there exists e' such that $< x, \sigma > \longrightarrow < e', \sigma >$, and P(x) holds.

Proving progress: Case e = n

Then $e \in Int$, so P(n) trivially holds.

Proving progress: Case $e = e_1 + e_2$

This is an inductive step. The inductive hypothesis is that P holds for subexpressions e_1 and e_2 . We need to show that P holds for e. In other words, we want to show that $P(e_1)$ and $P(e_2)$ implies P(e). Let's expand these properties. We know that the following hold:

$$P(e_1) = \forall \sigma. \ (e_1 \in \mathbf{Int}) \lor (\exists e', \sigma'. < e_1, \sigma > \longrightarrow < e', \sigma' >)$$

$$P(e_2) = \forall \sigma. \ (e_2 \in \mathbf{Int}) \lor (\exists e', \sigma'. < e_2, \sigma > \longrightarrow < e', \sigma' >)$$

and we want to show:

$$P(e) = \forall \sigma. (e \in Int) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >)$$

We must inspect several subcases.

Proving progress: Case $e = e_1 + e_2$, $e_1, e_2 \in \mathbf{Int}$

First, if both e_1 and e_2 are integer constants, say $e_1 = n_1$ and $e_2 = n_2$, then by rule ADD we know that the transition $< n_1 + n_2, \sigma > \longrightarrow < n, \sigma >$ is valid, where n is the sum of n_1 and n_2 . Hence, $P(e) = P(n_1 + n_2)$ holds (with witness e' = n).

Proving progress: Case $e = e_1 + e_2$, $e_1 \notin Int$

Second, if e_1 is not an integer constant, then by the inductive hypothesis $P(e_1)$ we know that $\langle e_1, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$ for some e' and σ' . We can then use rule LADD to conclude $\langle e_1 + e_2, \sigma \rangle \longrightarrow \langle e' + e_2, \sigma' \rangle$, so $P(e) = P(e_1 + e_2)$ holds.

Proving progress: Case $e = e_1 + e_2$, $e_1 \in Int$, $e_2 \notin Int$

Third, if e_1 is an integer constant, say $e_1 = n_1$, but e_2 is not, then by the inductive hypothesis $P(e_2)$ we know that $\langle e_2, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$ for some e' and σ' . We can then use rule RADD to conclude $\langle n_1 + e_2, \sigma \rangle \longrightarrow \langle n_1 + e', \sigma' \rangle$, so $P(e) = P(n_1 + e_2)$ holds.

Proving progress: Remaining cases

Case $e = e_1 \times e_2$ and case $e = x := e_1$; e_2 . These are also inductive cases, and their proofs are similar to the previous case. [Note that if you were writing this proof out for a homework, you should write these cases out in full.]

Incremental update

For all expressions e and stores σ , if $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$ then either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n]$.

Proving incremental update

We proceed by induction on the derivation of $< e, \sigma > \longrightarrow < e', \sigma' >$. Suppose we have e, σ, e' and σ' such that $< e, \sigma > \longrightarrow < e', \sigma' >$. The property P that we will prove of e, σ, e' and σ' , which we will write as $P(< e, \sigma > \longrightarrow < e', \sigma' >)$, is that either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n]$:

$$P(\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle) \triangleq \sigma = \sigma' \lor (\exists x \in \mathbf{Var}, n \in \mathbf{Int}. \ \sigma' = \sigma[x \mapsto n]).$$

Consider the cases for the derivation of $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$.

Proving incremental update: Case ADD

This is an axiom. Here, $e \equiv n + m$ and e' = p where p is the sum of m and n, and $\sigma' = \sigma$. The result holds immediately.

Proving incremental update: Case LADD

This is an inductive case. Here, $e \equiv e_1 + e_2$ and $e' \equiv e'_1 + e_2$ and $< e_1, \sigma > \longrightarrow < e'_1, \sigma' >$. By the inductive hypothesis, applied to $< e_1, \sigma > \longrightarrow < e'_1, \sigma' >$, we have that either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n]$, as required.

Proving incremental update: Case ${ m Asg}$

This is an axiom. Here $e \equiv x := n$; e_2 and $e' \equiv e_2$ and $\sigma' = \sigma[x \mapsto n]$. The result holds immediately.

Proving incremental update: remaining cases

We leave the other cases (VAR, RADD, LMUL, RMUL, MUL, and ASG1) as exercises. Seriously, try them. Make sure you can do them. Go on.

Break

Incremental update:

For all expressions e and stores σ , if $< e, \sigma > \longrightarrow < e', \sigma' >$ then either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n]$.

Can you prove incremental update by structural induction on the expression e instead of by induction on the derivation $< e, \sigma > \longrightarrow < e', \sigma' >$ (as we just did)?

Peano Axioms

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \dots$$

- 1. zero is a number.
- 2. If a is a number, the successor of a is a number.
- 3. zero is not the successor of a number.
- 4. Two numbers of which the successors are equal are themselves equal.
- 5. (induction axiom.) If a set S of numbers contains zero and also the successor of every number in S, then every number is in S.

Monster Chains

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \dots$$
$$\dots \rightarrow -a1 \rightarrow a0 \rightarrow a1 \rightarrow a2' \rightarrow a3' \rightarrow \dots$$
$$\dots \rightarrow -b1 \rightarrow b0 \rightarrow b1' \rightarrow b2' \rightarrow b3' \rightarrow \dots$$