Induction
 CS 152 (Spring 2024)

Harvard University

Tuesday, January 30, 2024

Today, we learn to

- define an inductive set
- derive the induction principle of an inductive set
- prove properties of programs by induction
- use Coq to check our proofs
- believe in induction!

Expressing Program Properties

Progress

$\forall e \in \operatorname{Exp} . \forall \sigma \in$ Store.

either $e \in \operatorname{Int}$ or $\exists e^{\prime}, \sigma^{\prime} .<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$

Termination

$\forall e \in$ Exp. $\forall \sigma_{0} \in$ Store. $\exists \sigma \in$ Store. $\exists n \in$ Int.

$$
<e, \sigma_{0}>\longrightarrow^{*}<n, \sigma>
$$

Deterministic Result

$\forall e \in$ Exp. $\forall \sigma_{0}, \sigma, \sigma^{\prime} \in$ Store. $\forall n, n^{\prime} \in \operatorname{Int}$.

$$
\begin{array}{r}
\text { if }\left\langle e, \sigma_{0}>\longrightarrow^{*}<n, \sigma>\right.\text { and } \\
<e, \sigma_{0}>\longrightarrow^{*}<n^{\prime}, \sigma^{\prime}>\text { then } \\
n=n^{\prime} \text { and } \sigma=\sigma^{\prime} .
\end{array}
$$

Inductive Sets

Inductive Set: Definition

Axiom:

$$
a \in A
$$

Inductive Rule:

$$
\begin{array}{ccc}
a_{1} \in A & \cdots & a_{n} \in A \\
\hline & a \in A
\end{array}
$$

Grammar for Exp

$$
e::=x|n| e_{1}+e_{2}\left|e_{1} \times e_{2}\right| x:=e_{1} ; e_{2}
$$

Inductive Set Exp

$\operatorname{VAR} \frac{\operatorname{INT}}{x \in \operatorname{Exp}} x \in \operatorname{Var} \quad n \in \operatorname{Int}$

$$
\operatorname{ADD} \frac{e_{1} \in \operatorname{Exp} \quad e_{2} \in \operatorname{Exp}}{e_{1}+e_{2} \in \operatorname{Exp}}
$$

$$
\operatorname{MuL} \frac{e_{1} \in \operatorname{Exp} \quad e_{2} \in \operatorname{Exp}}{e_{1} \times e_{2} \in \operatorname{Exp}}
$$

$$
\operatorname{ASG} \frac{e_{1} \in \operatorname{Exp} \quad e_{2} \in \operatorname{Exp}}{x:=e_{1} ; e_{2} \in \operatorname{Exp}} x \in \mathbf{V a r}
$$

Grammar Equivalent to Inductive Set

$$
e::=x|n| e_{1}+e_{2}\left|e_{1} \times e_{2}\right| x:=e_{1} ; e_{2}
$$

$\operatorname{VAR} \frac{\operatorname{Int}}{x \in \operatorname{Exp}} x \in \operatorname{Var} \quad n \in \operatorname{Int}$

$$
\begin{gathered}
\operatorname{ADD} \frac{e_{1} \in \operatorname{Exp} \quad e_{2} \in \operatorname{Exp}}{e_{1}+e_{2} \in \operatorname{Exp}} \\
\operatorname{MuL} \frac{e_{1} \in \operatorname{Exp} \quad e_{2} \in \operatorname{Exp}}{e_{1} \times e_{2} \in \operatorname{Exp}} \\
\operatorname{AsG} \frac{e_{1} \in \operatorname{Exp} \quad e_{2} \in \operatorname{Exp}}{x:=e_{1} ; e_{2} \in \operatorname{Exp}} x \in \mathbf{V a r}
\end{gathered}
$$

Inductive Set Exp: Example Derivation

Inductive Set \mathbb{N} (Natural Numbers)

The natural numbers can be inductively defined:

$$
\frac{}{0 \in \mathbb{N}} \quad \frac{n \in \mathbb{N}}{\operatorname{succ}(n) \in \mathbb{N}}
$$

where $\operatorname{succ}(n)$ is the successor of n.

Inductive Set \longrightarrow (Step Relation)

The small-step evaluation relation \longrightarrow is an inductively defined set. The definition of this set is given by the semantic rules.

Inductive Set $\longrightarrow{ }^{*}$ (Multi-Step Rel.)

$<e, \sigma>\longrightarrow^{*}<e, \sigma>$
$<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\quad<e^{\prime}, \sigma^{\prime}>\longrightarrow^{*}<e^{\prime \prime}, \sigma^{\prime \prime}>$
$<e, \sigma>\longrightarrow^{*}<e^{\prime \prime}, \sigma^{\prime \prime}>$

Inductive Set $\longrightarrow{ }^{*}$ (Multi-Step Rel.)

$$
\begin{gathered}
<e, \sigma>\longrightarrow{ }^{*}<e, \sigma> \\
\frac{<e^{\prime}, \sigma^{\prime}>\longrightarrow^{*}<e^{\prime \prime}, \sigma^{\prime \prime}>}{<e, \sigma>\longrightarrow^{*}<e^{\prime \prime}, \sigma^{\prime \prime}>} \text { where }<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>
\end{gathered}
$$

Inductive proofs

Mathematical induction

Mathematical induction

For any property P,
If

- $P(0)$ holds
- For all natural numbers n, if $P(n)$ holds then $P(n+1)$ holds
then for all natural numbers $k, P(k)$ holds.

Mathematical induction

For any property P, If

- $P(0)$ holds
- For all natural numbers n, if $P(n)$ holds then $P(n+1)$ holds
then for all natural numbers $k, P(k)$ holds.

Mathematical inductive reasoning principle

$0 \in \mathbb{N}$
$1 \in \mathbb{N}$
$2 \in \mathbb{N}$
$3 \in \mathbb{N}$
$4 \in \mathbb{N}$

$\frac{\frac{\frac{P(0)}{P(1)}}{P(2)}}{\frac{P(3)}{P(4)}}$| $P(5)$ |
| :---: |

Mathematical inductive reasoning principle

Induction on inductively-defined sets

Induction on inductively-defined sets

For any property P,
If

- Base cases: For each axiom

$$
\overline{a \in A},
$$

$P(a)$ holds.

- Inductive cases: For each inference rule

$$
\frac{a_{1} \in A \quad \ldots \quad a_{n} \in A}{a \in A},
$$

if $P\left(a_{1}\right)$ and \ldots and $P\left(a_{n}\right)$ then $P(a)$.
then for all $a \in A, P(a)$ holds.

Inductive reasoning principle for set Exp

For any property P,
If

- For all variables $x, P(x)$ holds.
- For all integers $n, P(n)$ holds.
- For all $e_{1} \in \operatorname{Exp}$ and $e_{2} \in \operatorname{Exp}$, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ then $P\left(e_{1}+e_{2}\right)$ holds.
- For all $e_{1} \in \operatorname{Exp}$ and $e_{2} \in \operatorname{Exp}$, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ then $P\left(e_{1} \times e_{2}\right)$ holds.
- For all variables x and $e_{1} \in \operatorname{Exp}$ and $e_{2} \in \operatorname{Exp}$, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ then $P\left(x:=e_{1} ; e_{2}\right)$ holds.
then for all $e \in \operatorname{Exp}, P(e)$ holds.

Case Int

InT
 $$
n \in \operatorname{Exp}
$$

For all integers n, $P(n)$ holds

Case ADD

$\operatorname{ADD}{ }^{e_{1} \in \operatorname{Exp} \quad e_{2} \in \operatorname{Exp}}$ $e_{1}+e_{2} \in \operatorname{Exp}$

For all $e_{1} \in \operatorname{Exp}$ and $e_{2} \in \operatorname{Exp}$, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ then $P\left(e_{1}+e_{2}\right)$ holds.

Inductive reasoning principle for set

For any property P, If

- VAR: For all variables x, stores σ and integers n such that $\sigma(x)=n, P(<x, \sigma>\longrightarrow<n, \sigma>)$ holds.
$>$ ADD: For all integers n, m, p such that $p=n+m$, and stores $\sigma, P(<n+m, \sigma>\longrightarrow<p, \sigma>)$ holds.
- Mul: For all integers n, m, p such that $p=n \times m$, and stores $\sigma, P(<n \times m, \sigma>\longrightarrow<p, \sigma>)$ holds.
- AsG: For all variables x, integers n and expressions $e \in$ Exp, $P(<x:=n ; e, \sigma>\longrightarrow<e, \sigma[x \mapsto n]>)$ holds.
- LADD: For all expressions $e_{1}, e_{2}, e_{1}^{\prime} \in \operatorname{Exp}$ and stores σ and σ^{\prime}, if $P\left(<e_{1}, \sigma>\longrightarrow<e_{1}^{\prime}, \sigma^{\prime}>\right)$ holds then $P\left(<e_{1}+e_{2}, \sigma>\longrightarrow<e_{1}^{\prime}+e_{2}, \sigma^{\prime}>\right)$ holds.
- RADD: For all integers n, expressions $e_{2}, e_{2}^{\prime} \in \operatorname{Exp}$ and stores σ and σ^{\prime}, if $P\left(<e_{2}, \sigma>\longrightarrow<e_{2}^{\prime}, \sigma^{\prime}>\right)$ holds then $P\left(<n+e_{2}, \sigma>\longrightarrow<n+e_{2}^{\prime}, \sigma^{\prime}>\right)$ holds.
LMul: For all expressions $e_{1}, e_{2}, e_{1}^{\prime} \in \operatorname{Exp}$ and stores σ and σ^{\prime}, if $P\left(<e_{1}, \sigma>\longrightarrow<e_{1}^{\prime}, \sigma^{\prime}>\right)$ holds then $P\left(<e_{1} \times e_{2}, \sigma>\longrightarrow<e_{1}^{\prime} \times e_{2}, \sigma^{\prime}>\right)$ holds.
- RMuL: For all integers n, expressions $e_{2}, e_{2}^{\prime} \in \operatorname{Exp}$ and stores σ and σ^{\prime}, if $P\left(<e_{2}, \sigma>\longrightarrow<e_{2}^{\prime}, \sigma^{\prime}>\right)$ holds then $P\left(<n \times e_{2}, \sigma>\longrightarrow<n \times e_{2}^{\prime}, \sigma^{\prime}>\right)$ holds.
- AsG1: For all variables x, expressions $e_{1}, e_{2}, e_{1}^{\prime} \in \operatorname{Exp}$ and stores σ and σ^{\prime}, if $P\left(<e_{1}, \sigma>\longrightarrow<e_{1}^{\prime}, \sigma^{\prime}>\right)$ holds then $P\left(<x:=e_{1} ; e_{2}, \sigma>\longrightarrow<x:=e_{1}^{\prime} ; e_{2}, \sigma^{\prime}>\right)$ holds.
then for all $<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$,
$P\left(<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\right)$ holds.

Proving progress

Progress (Statement)

Progress: For each store σ and expression e that is not an integer, there exists a possible transition for $<e, \sigma>$:

$\forall e \in \operatorname{Exp} . \forall \sigma \in$ Store.

either $e \in$ Int or $\exists e^{\prime}, \sigma^{\prime} .<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$

Progress (Rephrased)

$P(e)=\forall \sigma .(e \in \mathbf{I n t}) \vee\left(\exists e^{\prime}, \sigma^{\prime} .<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\right)$

Progress (Rephrased)

$\forall e \in$ Exp. $\forall \sigma \in$ Store.

 either $e \in \operatorname{Int}$ or $\exists e^{\prime}, \sigma^{\prime} .<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$$$
P(e)=\forall \sigma .(e \in \mathbf{I n t}) \vee\left(\exists e^{\prime}, \sigma^{\prime} .<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\right)
$$

Example: Proving progress

by "structural induction on the expressions e"
We will prove by structural induction on expressions Exp that for all expressions $e \in \operatorname{Exp}$ we have
$P(e)=\forall \sigma .(e \in \operatorname{lnt}) \vee\left(\exists e^{\prime}, \sigma^{\prime} .<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\right)$.
Consider the possible cases for e.

Proving progress: Case $e=x$

By the VAR axiom, we can evaluate $\langle x, \sigma\rangle$ in any state: $<x, \sigma>\longrightarrow<n, \sigma>$, where $n=\sigma(x)$.
So $e^{\prime}=n$ is a witness that there exists e^{\prime} such that $<x, \sigma>\longrightarrow<e^{\prime}, \sigma>$, and $P(x)$ holds.

Proving progress: Case $e=x$

$\operatorname{VAR} \xrightarrow[<x, \sigma>\longrightarrow<n, \sigma>]{ }$ where $n=\sigma(x)$
By the VAR axiom, we can evaluate $<x, \sigma>$ in any state: $<x, \sigma>\longrightarrow<n, \sigma>$, where $n=\sigma(x)$. So $e^{\prime}=n$ is a witness that there exists e^{\prime} such that $<x, \sigma>\longrightarrow<e^{\prime}, \sigma>$, and $P(x)$ holds.

Proving progress: Case $e=n$

Then $e \in$ Int, so $P(n)$ trivially holds.

Proving progress: Case $e=e_{1}+e_{2}$

This is an inductive step. The inductive hypothesis is that P holds for subexpressions e_{1} and e_{2}. We need to show that P holds for e. In other words, we want to show that $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ implies $P(e)$. Let's expand these properties. We know that the following hold:

$$
\begin{aligned}
& P\left(e_{1}\right)=\forall \sigma .\left(e_{1} \in \operatorname{Int}\right) \vee\left(\exists e^{\prime}, \sigma^{\prime} .\left\langle e_{1}, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}\right\rangle\right) \\
& P\left(e_{2}\right)=\forall \sigma .\left(e_{2} \in \operatorname{lnt}\right) \vee\left(\exists e^{\prime}, \sigma^{\prime} .\left\langle e_{2}, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}\right\rangle\right)
\end{aligned}
$$

and we want to show:
$P(e)=\forall \sigma .(e \in \mathbf{I n t}) \vee\left(\exists e^{\prime}, \sigma^{\prime} .<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\right)$
We must inspect several subcases.

Proving progress: Case $e=e_{1}+e_{2}$, $e_{1}, e_{2} \in \mathbf{l n t}$

First, if both e_{1} and e_{2} are integer constants, say $e_{1}=n_{1}$ and $e_{2}=n_{2}$, then by rule ADD we know that the transition $<n_{1}+n_{2}, \sigma>\longrightarrow<n, \sigma>$ is valid, where n is the sum of n_{1} and n_{2}. Hence, $P(e)=P\left(n_{1}+n_{2}\right)$ holds (with witness $e^{\prime}=n$).

Proving progress: Case $e=e_{1}+e_{2}$, $e_{1} \notin \operatorname{lnt}$

Second, if e_{1} is not an integer constant, then by the inductive hypothesis $P\left(e_{1}\right)$ we know that
$<e_{1}, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$ for some e^{\prime} and σ^{\prime}. We can then use rule LADD to conclude
$<e_{1}+e_{2}, \sigma>\longrightarrow<e^{\prime}+e_{2}, \sigma^{\prime}>$, so $P(e)=P\left(e_{1}+e_{2}\right)$ holds.

Proving progress: Case $e=e_{1}+e_{2}$, $e_{1} \in \mathbf{l n t}, e_{2} \notin \mathbf{l n t}$

Third, if e_{1} is an integer constant, say $e_{1}=n_{1}$, but e_{2} is not, then by the inductive hypothesis $P\left(e_{2}\right)$ we know that $\left\langle e_{2}, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}\right\rangle$ for some e^{\prime} and σ^{\prime}. We can then use rule RadD to conclude $<n_{1}+e_{2}, \sigma>\longrightarrow<n_{1}+e^{\prime}, \sigma^{\prime}>$, so $P(e)=P\left(n_{1}+e_{2}\right)$ holds.

Proving progress: Remaining cases

Case $e=e_{1} \times e_{2}$ and case $e=x:=e_{1} ; e_{2}$. These are also inductive cases, and their proofs are similar to the previous case. [Note that if you were writing this proof out for a homework, you should write these cases out in full.]

Incremental update

For all expressions e and stores σ, if
$<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$ then
either $\sigma=\sigma^{\prime}$ or
there is some variable x and integer n such that $\sigma^{\prime}=\sigma[x \mapsto n]$.

Proving incremental update

We proceed by induction on the derivation of $<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$. Suppose we have e, σ, e^{\prime} and σ^{\prime} such that $<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$. The property P that we will prove of e, σ, e^{\prime} and σ^{\prime}, which we will write as $P\left(<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\right)$, is that either $\sigma=\sigma^{\prime}$ or there is some variable x and integer n such that $\sigma^{\prime}=\sigma[x \mapsto n]$:

$$
\begin{array}{r}
P\left(<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>\right) \triangleq \\
\sigma=\sigma^{\prime} \vee\left(\exists x \in \mathbf{V a r}, n \in \text { Int. } \sigma^{\prime}=\sigma[x \mapsto n]\right) .
\end{array}
$$

Consider the cases for the derivation of $<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$.

Proving incremental update: Case ADD

This is an axiom. Here, $e \equiv n+m$ and $e^{\prime}=p$ where p is the sum of m and n, and $\sigma^{\prime}=\sigma$. The result holds immediately.

Proving incremental update: Case LADD

This is an inductive case. Here, $e \equiv e_{1}+e_{2}$ and $e^{\prime} \equiv e_{1}^{\prime}+e_{2}$ and $<e_{1}, \sigma>\longrightarrow<e_{1}^{\prime}, \sigma^{\prime}>$. By the inductive hypothesis, applied to
$<e_{1}, \sigma>\longrightarrow<e_{1}^{\prime}, \sigma^{\prime}>$, we have that either $\sigma=\sigma^{\prime}$ or there is some variable x and integer n such that $\sigma^{\prime}=\sigma[x \mapsto n]$, as required.

Proving incremental update: Case ASG

This is an axiom. Here $e \equiv x:=n ; e_{2}$ and $e^{\prime} \equiv e_{2}$ and $\sigma^{\prime}=\sigma[x \mapsto n]$. The result holds immediately.

Proving incremental update: remaining

 casesWe leave the other cases (Var, RAdd, LMul, RMul, Mul, and Asg1) as exercises. Seriously, try them. Make sure you can do them. Go on.

Break

Incremental update:
For all expressions e and stores σ, if
$<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$ then
either $\sigma=\sigma^{\prime}$ or
there is some variable x and integer n such that $\sigma^{\prime}=\sigma[x \mapsto n]$.

Can you prove incremental update by structural induction on the expression e instead of by induction on the derivation
$<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$ (as we just did)?

Interlude: What if induction weren't true?

Peano Axioms

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots
$$

1. zero is a number.
2. If a is a number, the successor of a is a number.
3. zero is not the successor of a number.
4. Two numbers of which the successors are equal are themselves equal.
5. (induction axiom.) If a set S of numbers contains zero and also the successor of every number in S, then every number is in S.

Monster Chains

$$
\begin{array}{r}
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots \\
\ldots \rightarrow-a 1 \rightarrow a 0 \rightarrow a 1 \rightarrow a 2^{\prime} \rightarrow a 3^{\prime} \rightarrow \ldots \\
\ldots \rightarrow-b 1 \rightarrow b 0 \rightarrow b 1^{\prime} \rightarrow b 2^{\prime} \rightarrow b 3^{\prime} \rightarrow \ldots
\end{array}
$$

