CS 152 (Spring 2024)

Harvard University

Tuesday, February 6, 2024

Today, we learn to

- define operational semantics for a simple imperative language
- prove equivalence between commands
- perform arguments on proof trees
- perform induction over derivation without counterpart over structure

IMP syntax

- arithmetic expressions

$$
a \in \mathbf{A} \exp
$$

- boolean expressions

$$
b \in \operatorname{Bexp}
$$

- commands

$$
c \in \mathbf{C o m}
$$

IMP syntax

$$
\begin{gathered}
a::=x|n| a_{1}+a_{2} \mid a_{1} \times a_{2} \\
b::=\text { true } \mid \text { false } \mid a_{1}<a_{2} \\
c::=\text { skip }|x:=a| c_{1} ; c_{2} \\
\mid \text { if } b \text { then } c_{1} \text { else } c_{2} \\
\mid \text { while } b \text { do } c
\end{gathered}
$$

Small-step operational semantics

Small-step operational semantics

- configurations of the form:

Small-step operational semantics

- configurations of the form:
$><a, \sigma>$

Small-step operational semantics

- configurations of the form:
$><a, \sigma>$
$><b, \sigma>$

Small-step operational semantics

- configurations of the form:

$$
\begin{aligned}
& \quad<a, \sigma> \\
& <b, \sigma> \\
& <c, \sigma>
\end{aligned}
$$

Small-step operational semantics

- configurations of the form:

$$
\begin{aligned}
& <a, \sigma> \\
> & <b, \sigma> \\
& <c, \sigma>
\end{aligned}
$$

- final configurations of the form:

Small-step operational semantics

- configurations of the form:

$$
\begin{aligned}
&<a, \sigma> \\
&<<b, \sigma> \\
&<c, \sigma>
\end{aligned}
$$

- final configurations of the form:
- $<n, \sigma>$

Small-step operational semantics

- configurations of the form:
- $<a, \sigma>$
- $<b, \sigma>$
- $\langle c, \sigma\rangle$
- final configurations of the form:
- $<n, \sigma>$
- $<$ true,$\sigma>,<$ false,$\sigma>$

Small-step operational semantics

- configurations of the form:
$<a, \sigma>$
$\ll b, \sigma>$
$<c, \sigma>$
- final configurations of the form:
- $<n, \sigma>$
- $<$ true,$\sigma>,<$ false, $\sigma>$
- $<\mathbf{s k i p}, \sigma>$

3 different small-step operational

 semantics relations
3 different small-step operational semantics relations

$\longrightarrow \mathbf{A e x p} \subseteq$?
$\longrightarrow_{\text {Bexp }} \subseteq$?
$\longrightarrow \mathbf{C o m} \subseteq$?

3 different small-step operational semantics relations
$\longrightarrow_{\text {Aexp }} \subseteq \mathbf{A} \exp \times$ Store \times Aexp \times Store
$\longrightarrow_{\text {Bexp }} \subseteq$ Bexp \times Store \times Bexp \times Store
\longrightarrow Com \subseteq Com \times Store \times Com \times Store

3 different small-step operational

 semantics relations$$
\begin{aligned}
& \longrightarrow_{\text {Aexp }} \subseteq(\text { Aexp } \times \text { Store }) \times(\text { Aexp } \times \text { Store }) \\
& \longrightarrow_{\text {Bexp }} \subseteq(\text { Bexp } \times \text { Store }) \times(\text { Bexp } \times \text { Store }) \\
& \\
& \text { Com } \subseteq(\text { Com } \times \text { Store }) \times(\text { Com } \times \text { Store })
\end{aligned}
$$

3 different small-step operational semantics relations

$($ Aexp \times Store $) \longrightarrow_{\text {Aexp }}($ Aexp \times Store $)$
$($ Bexp \times Store $) \longrightarrow_{\text {Bexp }}($ Bexp \times Store $)$
(Com \times Store) \longrightarrow Com $($ Com \times Store $)$

Arithmetic expressions $(1 / 2)$

where $n=\sigma(x)$

$$
\begin{gathered}
<a_{1}, \sigma>\longrightarrow<a_{1}^{\prime}, \sigma> \\
\hline<a_{1}+a_{2}, \sigma>\longrightarrow<a_{1}^{\prime}+a_{2}, \sigma> \\
<a_{2}, \sigma>\longrightarrow<a_{2}^{\prime}, \sigma> \\
<n+a_{2}, \sigma>\longrightarrow<n+a_{2}^{\prime}, \sigma>
\end{gathered}
$$

$$
<n+m, \sigma>\longrightarrow<p, \sigma>\text { where } p=n+m
$$

Arithmetic expressions $(2 / 2)$

$$
\begin{gathered}
<a_{1}, \sigma>\longrightarrow<a_{1}^{\prime}, \sigma> \\
<a_{1} \times a_{2}, \sigma>\longrightarrow<a_{1}^{\prime} \times a_{2}, \sigma> \\
<a_{2}, \sigma>\longrightarrow<a_{2}^{\prime}, \sigma> \\
<n \times a_{2}, \sigma>\longrightarrow<n \times a_{2}^{\prime}, \sigma>
\end{gathered}
$$

$$
<n \times m, \sigma>\longrightarrow<p, \sigma>
$$

Boolean expressions

$$
\begin{gathered}
<a_{1}, \sigma>\longrightarrow<a_{1}^{\prime}, \sigma> \\
\hline<a_{1}<a_{2}, \sigma>\longrightarrow<a_{1}^{\prime}<a_{2}, \sigma> \\
<a_{2}, \sigma>\longrightarrow<a_{2}^{\prime}, \sigma> \\
<n<a_{2}, \sigma>\longrightarrow<n<a_{2}^{\prime}, \sigma>
\end{gathered}
$$

> where $n<m$
> $<n<m, \sigma>\longrightarrow<$ true, $\sigma>$

Commands (1/3)

$$
\begin{gathered}
<a, \sigma>\longrightarrow<a^{\prime}, \sigma> \\
<x:=a, \sigma>\longrightarrow<x:=a^{\prime}, \sigma>
\end{gathered}
$$

$$
<x:=n, \sigma>\longrightarrow<\text { skip }, \sigma[x \mapsto n]>
$$

$$
\begin{gathered}
<c_{1}, \sigma>\longrightarrow<c_{1}^{\prime}, \sigma^{\prime}> \\
<c_{1} ; c_{2}, \sigma>\longrightarrow<c_{1}^{\prime} ; c_{2}, \sigma^{\prime}>
\end{gathered}
$$

$<$ skip; $c_{2}, \sigma>\longrightarrow<c_{2}, \sigma>$

Commands $(2 / 3)$

$$
\begin{gathered}
\quad<b, \sigma>\longrightarrow<b^{\prime}, \sigma> \\
<\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma>\longrightarrow \\
<\text { if } b^{\prime} \text { then } c_{1} \text { else } c_{2}, \sigma>
\end{gathered}
$$

$<$ if true then c_{1} else $c_{2}, \sigma>\longrightarrow<c_{1}, \sigma>$
$<$ if false then c_{1} else $c_{2}, \sigma>\longrightarrow<c_{2}, \sigma>$

Commands (3/3)

$<$ while b do $c, \sigma>\longrightarrow$
$<$ if b then (c; while b do c) else skip, $\sigma>$

Small-step execution

$<$ foo :=3; while foo <4 do foo := foo $+5, \sigma>$
$\longrightarrow<$ skip; while foo <4 do foo $:=$ foo $+5, \sigma^{\prime}>$ where $\sigma^{\prime}=\sigma[\mathrm{foo} \mapsto 3]$
$\longrightarrow<$ while foo <4 do foo $:=$ foo $+5, \sigma^{\prime}>$
$\longrightarrow<$ if foo <4 then (foo := foo $+5 ; W$) else skip, $\sigma^{\prime}>$
$\longrightarrow<$ if $3<4$ then (foo := foo $+5 ; W$) else skip, $\sigma^{\prime}>$
$\longrightarrow<$ if true then (foo:= foo $+5 ; W$) else skip, $\sigma^{\prime}>$
$\longrightarrow<$ foo $:=$ foo +5 ; while foo <4 do foo $:=$ foo $+5, \sigma^{\prime}>$
$\longrightarrow<$ foo : $=3+5$; while foo <4 do foo $:=$ foo $+5, \sigma^{\prime}>$
$\longrightarrow<$ foo : $=8$; while foo <4 do foo $:=$ foo $+5, \sigma^{\prime}>$
$\longrightarrow<$ skip; while foo <4 do foo := foo $+5, \sigma^{\prime \prime}>$
where $\sigma^{\prime \prime}=\sigma^{\prime}[\mathrm{foo} \mapsto 8]$
$\longrightarrow<$ while foo <4 do foo: $=$ foo $+5, \sigma^{\prime \prime}>$
$\longrightarrow<$ if foo <4 then (foo: $=$ foo $+5 ; W$) else skip, $\sigma^{\prime \prime}>$
$\longrightarrow<$ if $8<4$ then (foo := foo $+5 ; W$) else skip, $\sigma^{\prime \prime}>$
$\longrightarrow<$ if false then (foo: $=$ foo $+5 ; W$) else skip, $\sigma^{\prime \prime}>$
$\longrightarrow<$ skip, $\sigma^{\prime \prime}>$
(where W is an abbreviation for the while loop while foo <4 do foo := foo +5).

Large-step operational semantics

Large-step operational semantics

$$
\Downarrow_{\text {Aexp }} \subseteq ?
$$

$$
\Downarrow_{\operatorname{Bexp}} \subseteq ?
$$

$$
\Downarrow_{\mathrm{Com}} \subseteq ?
$$

Large-step operational semantics

$$
\Downarrow_{\text {Aexp }} \subseteq \text { Aexp } \times \text { Store } \times \text { Int }
$$

$\Downarrow_{\text {Bexp }} \subseteq$ Bexp \times Store \times Bool
$\Downarrow_{\text {Com }} \subseteq$ Com \times Store \times Store

Large-step operational semantics

$$
\Downarrow_{\text {Aexp }} \subseteq(\mathbf{A} \exp \times \text { Store }) \times \operatorname{lnt}
$$

$$
\psi_{\text {Bexp }} \subseteq(\text { Bexp } \times \text { Store }) \times \text { Bool }
$$

$$
\Downarrow_{\text {Com }} \subseteq(\text { Com } \times \text { Store }) \times \text { Store }
$$

Large-step operational semantics

$($ Aexp \times Store $) \Downarrow_{\text {Aexp }}$ Int
$(\operatorname{Bexp} \times$ Store $) \Downarrow_{\text {Bexp }}$ Bool
(Com \times Store) $\Downarrow_{\text {Com }}$ Store

Arithmetic expressions

$$
\overline{<n, \sigma>\Downarrow n} \quad \overline{<x, \sigma>\Downarrow n} \text { where } \sigma(x)=n
$$

$\frac{<a_{1}, \sigma>\Downarrow n_{1} \quad<a_{2}, \sigma>\Downarrow n_{2}}{<a_{1}+a_{2}, \sigma>\Downarrow n}$ where $n=n_{1}+n_{2}$
$\frac{<a_{1}, \sigma>\Downarrow n_{1} \quad<a_{2}, \sigma>\Downarrow n_{2}}{<a_{1} \times a_{2}, \sigma>\Downarrow n}$ where $n=n_{1} \times n_{2}$

Boolean expressions

$<$ true,$\sigma>\Downarrow$ true
 $<$ false, $\sigma>\Downarrow$ false

$$
\begin{gathered}
\frac{<a_{1}, \sigma>\Downarrow n_{1} \quad<a_{2}, \sigma>\Downarrow n_{2}}{<a_{1}<a_{2}, \sigma>\Downarrow \text { true }} \text { where } n_{1}<n_{2} \\
\frac{<a_{1}, \sigma>\Downarrow n_{1} \quad<a_{2}, \sigma>\Downarrow n_{2}}{<a_{1}<a_{2}, \sigma>\Downarrow \text { false }} \text { where } n_{1} \geq n_{2}
\end{gathered}
$$

Commands (1/2)

$$
\begin{gathered}
\text { SKIP } \overline{<\text { skip, } \sigma>\Downarrow \sigma} \\
\text { MSG } \frac{<a, \sigma>\Downarrow n}{<x:=a, \sigma>\Downarrow \sigma[x \mapsto n]} \\
\operatorname{SEQ} \frac{<c_{1}, \sigma>\Downarrow \sigma^{\prime} \quad<c_{2}, \sigma^{\prime}>\Downarrow \sigma^{\prime \prime}}{<c_{1} ; c_{2}, \sigma>\Downarrow \sigma^{\prime \prime}} \\
\text { IF-T } \frac{<b, \sigma>\Downarrow \text { true } \quad<c_{1}, \sigma>\Downarrow \sigma^{\prime}}{<\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma>\Downarrow \sigma^{\prime}} \\
\text { IF-F } \frac{<b, \sigma>\Downarrow \text { false } \quad<c_{2}, \sigma>\Downarrow \sigma^{\prime}}{<\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma>\Downarrow \sigma^{\prime}}
\end{gathered}
$$

Commands (2/2)

$$
\text { While-F } \frac{<b, \sigma>\Downarrow \text { false }}{<\text { while } b \text { do } c, \sigma>\Downarrow \sigma}
$$

$$
\begin{gathered}
<b, \sigma>\Downarrow \text { true } \quad<c, \sigma>\Downarrow \sigma^{\prime} \\
\text { WHILE-T } \frac{<\text { while } b \text { do } c, \sigma^{\prime}>\Downarrow \sigma^{\prime \prime}}{<\text { while } b \text { do } c, \sigma>\Downarrow \sigma^{\prime \prime}}
\end{gathered}
$$

Command equivalence

The small-step operational semantics suggest that the loop while b do c should be equivalent to the command if b then (c; while b do c) else skip. Can we show that this indeed the case when the language is defined using the above large-step evaluation?

Equivalence of commands

Two commands c and c^{\prime} are equivalent written $c \sim c^{\prime}$
if, for any stores σ and σ^{\prime}, we have

$$
<c, \sigma>\Downarrow \sigma^{\prime} \Longleftrightarrow<c^{\prime}, \sigma>\Downarrow \sigma^{\prime}
$$

Theorem

For all $b \in \operatorname{Bexp}$ and $c \in \mathbf{C o m}$ we have

while b do c

if b then $(c$; while b do c) else skip

Proof

Let W be an abbreviation for while b do c. We want to show that for all stores σ, σ^{\prime}, we have:
$<W, \sigma>\Downarrow \sigma^{\prime} \Longleftrightarrow<$ if b then $(c ; W)$ else skip, $\sigma>\Downarrow \sigma^{\prime}$
For this, we must show that both directions $(\Longrightarrow$ and \Longleftarrow) hold. We'll show only direction \Longrightarrow; the other is similar.
Assume that σ and σ^{\prime} are stores such that $<W, \sigma>\Downarrow \sigma^{\prime}$. It means that there is some derivation that proves for this fact. Inspecting the evaluation rules, we see that there are two possible rules whose conclusions match this fact: While-F and While-T. We analyze each of them in turn.

Case While-F (1/2)

The derivation must look like the following.

$$
\text { WHILE-F } \frac{\frac{:^{1}}{<b, \sigma>\Downarrow \text { false }}}{\frac{<W, \sigma>\Downarrow \sigma}{}}
$$

Here, we use $:^{1}$ to refer to the derivation of $<b, \sigma>\Downarrow$ false. Note that in this case, $\sigma^{\prime}=\sigma$.

Case While-F (2/2)

We can use $:^{1}$ to derive a proof tree showing that the evaluation of if b then $(c ; W)$ else skip yields the same final state σ :

Case While-T (1/2)

In this case, the derivation has the following form.
:2
$<b, \sigma>\Downarrow$ true

Case While-T (2/2)

We can use subderivations $:^{2},:^{3}$, and $:^{4}$ to show that the evaluation of if b then $(c ; W)$ else skip yields the same final state σ.

$$
\begin{aligned}
& \text { :2 } \\
& <b, \sigma>\Downarrow \text { true } \\
& \frac{\vdots^{3}}{\sigma>\Downarrow \sigma^{\prime \prime}} \quad \frac{\vdots^{4}}{<W, \sigma^{\prime \prime}>\Downarrow \sigma^{\prime}} \\
& \text { IF-T } \\
& <c ; W, \sigma>\Downarrow \sigma^{\prime} \\
& <\text { if } b \text { then }(c ; W) \text { else skip, } \sigma>\Downarrow \sigma^{\prime}
\end{aligned}
$$

Break

- Add \wedge to boolean expressions.
- Contrast the design of While in small-step and large-step. Can one style be used for the other? Can you mix small-step and large-step?
- How do you prove that while true do skip never terminates? In small-step? In large-step?
- Define and sketch proof for large-step determinism of commands.

\wedge extending grammar

$$
\begin{aligned}
b & : \\
t & =\ldots \mid b_{1} \wedge b_{2} \\
: & =\text { true } \mid \text { false }
\end{aligned}
$$

\wedge extending large-step semantics

$$
\frac{<b_{1}, \sigma>\Downarrow t_{1} \quad<b_{2}, \sigma>\Downarrow t_{2}}{<b_{1} \wedge b_{2}, \sigma>\Downarrow t_{3}}
$$

where t_{3} is true
if t_{1} and t_{2} are true, and false otherwise
\wedge extending large-step semantics (alternative left-first-sequential)

$$
\begin{gathered}
<b_{1}, \sigma>\Downarrow \text { false } \\
<b_{1} \wedge b_{2}, \sigma>\Downarrow \text { false }
\end{gathered}
$$

$<b_{1}, \sigma>\Downarrow$ true $\quad<b_{2}, \sigma>\Downarrow$ false $<b_{1} \wedge b_{2}, \sigma>\Downarrow$ false
$<b_{1}, \sigma>\Downarrow$ true $\quad<b_{2}, \sigma>\Downarrow$ true $<b_{1} \wedge b_{2}, \sigma>\Downarrow$ true

Alternative large-step rule for While

$<$ if b then $\left(c\right.$; while b do c) else skip, $\sigma>\Downarrow \sigma^{\prime}$
$<$ while b do $c, \sigma>\Downarrow \sigma^{\prime}$

Determinism

For all commands $c \in \mathbf{C o m}$ and stores $\sigma, \sigma_{1}, \sigma_{2} \in$ Store, if $<c, \sigma>\Downarrow \sigma_{1}$ and $<c, \sigma>\Downarrow \sigma_{2}$ then $\sigma_{1}=\sigma_{2}$.

Proof Sketch for Determinism

By induction on the derivation of $<c, \sigma>\Downarrow \sigma_{1}$. The inductive hypothesis P is

$$
\begin{aligned}
& P\left(<c, \sigma>\Downarrow \sigma_{1}\right)=\forall \sigma_{2} \in \text { Store } \\
& \quad \text { if }<c, \sigma>\Downarrow \sigma_{2} \text { then } \sigma_{1}=\sigma_{2}
\end{aligned}
$$

We have a derivation for $\left\langle c, \sigma>\Downarrow \sigma_{1}\right.$, for some c, σ, and σ_{1}. Assume that the inductive hypothesis holds for any subderivation $<c^{\prime}, \sigma^{\prime}>\Downarrow \sigma^{\prime \prime}$ used in the derivation of $<c, \sigma>\Downarrow \sigma_{1}$.
Assume that for some σ_{2} we have $<c, \sigma>\Downarrow \sigma_{2}$.
We need to show that $\sigma_{1}=\sigma_{2}$.

Case IF-T $(1 / 2)$

and we have $c \equiv$ if b then c_{1} else c_{2}.
The last rule used in the derivation of $<c, \sigma>\Downarrow \sigma_{2}$ must be either IF-T or IF-F (since these are the only rules that can be used to derive a conclusion of the form $<$ if b then c_{1} else $c_{2}, \sigma>\Downarrow \sigma_{2}$). But by the determinism of boolean expressions, we must have $<b, \sigma>\Downarrow$ true, and so the derivation of $<c, \sigma>\Downarrow \sigma_{2}$ must have the following form...

Case IF-T (2/2)

$$
\text { IF-T } \frac{<b, \sigma>\Downarrow \text { true } \quad<c_{1}, \sigma>\Downarrow \sigma_{2}}{<\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma>\Downarrow \sigma_{2}}
$$

The result holds by the inductive hypothesis applied to the derivation $\quad<c_{1}, \sigma>\Downarrow \sigma_{1}$.

Case While-T (1/3)

 Here we have$$
\begin{gathered}
\frac{<b, \sigma>\Downarrow \text { true }}{} \\
\frac{\vdots}{<c_{1}, \sigma>\Downarrow \sigma^{\prime}} \\
\vdots \\
\frac{<c, \sigma^{\prime}>\Downarrow \sigma_{1}}{<\text { while }-\mathrm{T}} \frac{\mathrm{do} c_{1}, \sigma>\Downarrow \sigma_{1}}{\ll \text { while }},
\end{gathered}
$$

and we have $c \equiv$ while b do c_{1}. The last rule used in the derivation of $<c, \sigma>\Downarrow \sigma_{2}$ must also be While-T (by the determinism of boolean expressions), and so we have...

Case While-T (2/3)

By the inductive hypothesis applied to the
derivation $\quad<c_{1}, \sigma>\Downarrow \sigma^{\prime}$, we have $\sigma^{\prime}=\sigma^{\prime \prime} \ldots$

Case While-T (3/3)

By another application of the inductive hypothesis,
to the derivation $<c, \sigma^{\prime}>\Downarrow \sigma_{1}$, we have $\sigma_{1}=\sigma_{2}$ and the result holds.

Comment on Case While-T

Even though the command $c \equiv$ while b do c_{1} appears in the derivation of
$<$ while b do $c_{1}, \sigma>\Downarrow \sigma_{1}$, we do not run in to problems, as the induction is over the derivation, not over the structure of the command.

