References and Continuations CS 152 (Spring 2024)

Harvard University

Thursday, February 22, 2024

Today, we will learn about

- References
- Continuations
- CPS translation

References

- We introduce constructs for creating, reading, and updating memory locations, also called references.
- The resulting language is still a functional language (since functions are first-class values), but expressions can have side-effects, that is, they can modify state.

References: syntax

$$
\begin{aligned}
& e::=x|\lambda x . e| e_{0} e_{1} \mid \text { ref } e|!e| e_{1}:=e_{2} \mid \ell \\
& v::=\lambda x . e \mid \ell
\end{aligned}
$$

References: syntax

$$
\begin{aligned}
& e::=x|\lambda x . e| e_{0} e_{1} \mid \text { ref } e|!e| e_{1}:=e_{2} \mid \ell \\
& v::=\lambda x . e \mid \ell
\end{aligned}
$$

- ref e creates a new memory location (like a malloc), and sets the initial contents of the location to (the result of) e.
- The expression ref e itself evaluates to a memory location ℓ.

References: syntax

$$
\begin{aligned}
& e::=x|\lambda x . e| e_{0} e_{1}|\operatorname{ref} e|!e\left|e_{1}:=e_{2}\right| \ell \\
& v::=\lambda x . e \mid \ell
\end{aligned}
$$

- The expression !e assumes that e evaluates to a memory location, and !e evaluates to the current contents of the memory location.
- Expression $e_{1}:=e_{2}$ assumes that e_{1} evaluates to a memory location ℓ, and updates the contents of ℓ with (the result of) e_{2}.

References

- Locations ℓ are not part of the surface syntax of the language, the syntax that a programmer would write.

They are introduced only by the operational semantics.

References: small-step CBV operational

 semantics.$$
\begin{gathered}
E::=[\cdot] \mid E \text { e|vE|ref } E|!E| E:=e \mid v:=E \\
\frac{<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>}{\left.<E[e], \sigma>\longrightarrow<e^{\prime}\right], \sigma^{\prime}>}
\end{gathered}
$$

β-REDUCTION $\underset{\langle(\lambda x . e) v, \sigma>\longrightarrow e\{v / x\}, \sigma>}{ }$

References: small-step CBV operational

 semantics.$$
\text { ALLOC } \underset{<\operatorname{ref} v, \sigma>\longrightarrow<\ell, \sigma[\ell \mapsto v]>}{ } \ell \notin \operatorname{dom}(\sigma)
$$

$$
\text { DEREF } \underset{<!\ell, \sigma>\longrightarrow<v, \sigma>}{ } \sigma(\ell)=v
$$

AsSIGN $\underset{<\ell:=v, \sigma>\longrightarrow<v, \sigma[\ell \mapsto v]>}{ }$

References do not add any expressive power to the lambda calculus

References do not add any expressive power to the lambda calculus

It is possible to translate lambda calculus with references to the pure lambda calculus.

Continuations

So far we have seen a number of language features that extend lambda calculus, and have translated many of these into the pure lambda calculus:

$$
\begin{aligned}
& \mathcal{T} \llbracket \lambda x \cdot e \rrbracket=\lambda x \cdot \mathcal{T} \llbracket e \rrbracket \\
& \mathcal{T} \llbracket e_{1} e_{2} \rrbracket=\mathcal{T} \llbracket e_{1} \rrbracket \mathcal{T} \llbracket e_{2} \rrbracket
\end{aligned}
$$

Continuations

This style of translation works well when the source language is similar to the target language.

- However, when the control structures of the source and target languages differ considerably, it doesn't work as well.

Continuations

Continuations are a programming technique that may be used directly by a programmer, or used in program transformations by a compiler.

Continuations

Intuitively, a continuation represents "the rest of the program."

if foo <10 then $32+6$ else $7+$ bar

Consider the evaluation of the expression foo <10.

if foo <10 then $32+6$ else $7+$ bar

When we finish evaluating foo <10, we will evaluate the if statement, and then evaluate the appropriate branch.

if foo <10 then $32+6$ else $7+$ bar

The continuation of the subexpression foo <10 is the rest of the computation that will occur after we evaluate the subexpression.

if foo <10 then $32+6$ else $7+$ bar

We can write this continuation as a function that takes the result of the subexpression:
$(\lambda y$. if y then $32+6$ else $7+$ bar $)($ foo $<10)$

if foo <10 then $32+6$ else $7+$ bar

$$
(\lambda y \text {. if } y \text { then } 32+6 \text { else } 7+\text { bar) }(\text { foo }<10)
$$

The evaluation order and result remain the same, we just extracted the continuation of the subexpression in to a function.

$(\lambda x \cdot x)((1+2)+3)+4$

$(\lambda x \cdot x)((1+2)+3)+4$

We start by defining a continuation for the outermost evaluation context, which takes a value, and applies the identity function to it.

$$
k_{0}=\lambda v \cdot(\lambda x \cdot x) v
$$

$(\lambda x \cdot x)((1+2)+3)+4$

The evaluation context that is evaluated next-to-last takes a value, adds 4 to it, and then passes the result to k_{0}.

$$
k_{1}=\lambda a \cdot k_{0}(a+4)
$$

Likewise, for the next evaluation contexts.

$$
\begin{aligned}
& k_{2}=\lambda b \cdot k_{1}(b+3) \\
& k_{3}=\lambda c \cdot k_{2}(c+2)
\end{aligned}
$$

$(\lambda x \cdot x)((1+2)+3)+4$

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a+4) \\
& k_{2}=\lambda b \cdot k_{1}(b+3) \\
& k_{3}=\lambda c \cdot k_{2}(c+2)
\end{aligned}
$$

The program itself is now equivalent to $k_{3} 1$. We can rewrite the above as

$$
\begin{aligned}
& \text { let } c=1 \text { in } \\
& \text { let } b=c+2 \text { in } \\
& \text { let } a=b+3 \text { in } \\
& \text { let } v=a+4 \text { in } \\
& (\lambda x . x) v
\end{aligned}
$$

This is fairly close to some machine instructions of the form:

set $c, 1$
add $b, c, 2$
add $a, b, 3$
add $v, a, 4$
call id, v

Using continuations, functions can be transformed into "functions that don't return"-functions that take, besides the usual arguments, an additional argument representing a continuation.

When the function finishes, it invokes the continuation on its result, instead of returning the result to its caller. Writing functions in this way is usually referred to as Continuation-Passing Style.

CPS version of factorial

$F A C T_{c p s}=Y \lambda f . \lambda n, k$.
if $n=0$ then $k 1$ else $f(n-1)(\lambda v . k(n * v))$

CPS translation

- We can translate lambda calculus programs into continuation-passing style.
- We define a translation function $\mathcal{C P S} \mathcal{S} \llbracket \rrbracket$
- It takes a CBV lambda calculus expression, and translates the expression to a CBV lambda calculus expression in continuation-passing style.

From lambda calculus with pairs to CPS

$$
e::=x|\lambda x \cdot e| e_{1} e_{2}|n| e_{1}+e_{2}\left|\left(e_{1}, e_{2}\right)\right| \# 1 e \mid \# 2 e
$$

From lambda calculus with pairs to CPS

The translation $\mathcal{C P} \mathcal{S} \llbracket e \rrbracket$ will produce a function whose argument is the continuation to which to pass the result.

That is, for all expressions e, the translation is of the form $\mathcal{C P} \mathcal{S} \llbracket e \rrbracket=\lambda k \ldots$, where k is a continuation.

From lambda calculus with pairs to CPS

We will both assume and guarantee that for any expression e, the translation $\mathcal{C P} \mathcal{S} \llbracket e \rrbracket=\lambda k \ldots$ will apply k to the result of evaluating e.

From lambda calculus with pairs to CPS

$$
\mathcal{C P S} \mathbb{S} \llbracket \rrbracket k=k n
$$

$\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k=\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda m \cdot k(n+m))\right)$ n is not a free variable of e_{2}
$\mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k=\mathcal{C P} \mathcal{S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P} \mathcal{S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right)$ v is not a free variable of e_{2}

From lambda calculus with pairs to CPS

$$
\begin{aligned}
\mathcal{C P S} \llbracket \# 1 e \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e \rrbracket(\lambda v \cdot k(\# 1 v)) \\
\mathcal{C P S} \llbracket \# 2 e \rrbracket k & =\mathcal{C P S} \llbracket e \rrbracket(\lambda v \cdot k(\# 2 v)) \\
\mathcal{C P} \mathcal{S} \llbracket x \rrbracket k & =k x
\end{aligned}
$$

$$
\mathcal{C P S} \llbracket \lambda x \cdot e \rrbracket k=k\left(\lambda x, k^{\prime} \cdot \mathcal{C P} \mathcal{S} \llbracket e \rrbracket k^{\prime}\right)
$$

$$
k^{\prime} \text { is not a free variable of } e
$$

$\mathcal{C P S} \llbracket e_{1} e_{2} \rrbracket k=\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda f . \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda v . f v k)\right)$ f is not a free variable of e_{2}

Example: $\mathcal{C P S} \llbracket(\lambda a . a+6) 7 \rrbracket / D$

$$
\begin{aligned}
& =\mathcal{C P S} \llbracket(\lambda a \cdot a+6) \rrbracket(\lambda f . \mathcal{C P S} \mathbb{S} \llbracket \rrbracket(\lambda v . f v I D)) \\
& =(\lambda f . \mathcal{C P S} \llbracket 7 \rrbracket(\lambda v . f v I D))\left(\lambda a, k^{\prime} \cdot \mathcal{C P S} \llbracket a+6 \rrbracket k^{\prime}\right) \\
& =(\lambda f \cdot(\lambda v . f v I D) 7)\left(\lambda a, k^{\prime} \cdot \mathcal{C P S} \mathbb{S} \llbracket a+6 \rrbracket k^{\prime}\right) \\
& =(\lambda f \cdot(\lambda v . f v I D) 7)\left(\lambda a, k^{\prime} \cdot \mathcal{C P} \mathcal{S} \llbracket a \rrbracket\right. \\
& \left.\quad\left(\lambda n \cdot \mathcal{C P S} \llbracket 6 \rrbracket\left(\lambda m \cdot k^{\prime}(m+n)\right)\right)\right)
\end{aligned}
$$

Example: $\mathcal{C P S} \llbracket(\lambda a . a+6) 7 \rrbracket / D$

$$
\left.\begin{array}{rl}
= & (\lambda f .(\lambda v . f v I D) 7)\left(\lambda a, k^{\prime} . \mathcal{C P S} \mathbb{S} \llbracket a \rrbracket\right. \\
& \left.\left(\lambda n \cdot \mathcal{C P} \mathcal{S} \llbracket 6 \rrbracket\left(\lambda m \cdot k^{\prime}(m+n)\right)\right)\right)
\end{array}\right)
$$

Example: $\mathcal{C P S} \llbracket(\lambda a . a+6) 7 \rrbracket / D$

$(\lambda f .(\lambda v . f \vee I D) 7)\left(\lambda a, k^{\prime} .\left(\lambda n .\left(\lambda m . k^{\prime}(m+n)\right) 6\right) a\right)$
$\longrightarrow\left(\lambda v .\left(\lambda a, k^{\prime} .\left(\lambda n \cdot\left(\lambda m \cdot k^{\prime}(m+n)\right) 6\right) a\right) v I D\right) 7$
$\longrightarrow\left(\lambda a, k^{\prime} .\left(\lambda n \cdot\left(\lambda m \cdot k^{\prime}(m+n)\right) 6\right)\right.$ a) $7 I D$
$\longrightarrow(\lambda n .(\lambda m \cdot I D(m+n)) 6) 7$
$\longrightarrow(\lambda m . I D(m+7)) 6$
$\longrightarrow I D(6+7)$
$\longrightarrow I D 13$
$\longrightarrow 13$

