More types
 CS 152 (Spring 2024)

Harvard University

Thursday, February 29, 2024

Today, we will learn about

- typing extensions to the simply-typed lambda-calculus

Products

Syntax:

$$
\begin{gathered}
\left(e_{1}, e_{2}\right) \\
\# 1 e \\
\# 2 e
\end{gathered}
$$

Context:

$$
E::=\ldots|(E, e)|(v, E)|\# 1 E| \# 2 E
$$

Operational semantic rules:

$$
\# 1\left(v_{1}, v_{2}\right) \longrightarrow v_{1} \quad \# 2\left(v_{1}, v_{2}\right) \longrightarrow v_{2}
$$

Typing of Products

Product type: $\tau_{1} \times \tau_{2}$
Typing rules:

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} \times \tau_{2}}
$$

$$
\frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \# 1 e: \tau_{1}}
$$

$$
\frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \# 2 e: \tau_{2}}
$$

Sums

Syntax:

$$
\begin{aligned}
& e::=\cdots\left|\operatorname{inl}_{\tau_{1}+\tau_{2}} e\right| \operatorname{inr}_{\tau_{1}+\tau_{2}} e \mid \text { case } e_{1} \text { of } e_{2} \mid e_{3} \\
& v::=\cdots\left|\operatorname{inl}_{\tau_{1}+\tau_{2}} v\right| \operatorname{inr}_{\tau_{1}+\tau_{2}} v
\end{aligned}
$$

Context:

$$
E::=\cdots\left|\operatorname{inl}_{\tau_{1}+\tau_{2}} E\right| \operatorname{inr}_{\tau_{1}+\tau_{2}} E \mid \text { case } E \text { of } e_{2} \mid e_{3}
$$

Operational rules:
$\overline{\text { case inl }}{\tau_{1}+\tau_{2}} v$ of $e_{2} \mid e_{3} \longrightarrow e_{2} v$
case $\operatorname{inr}_{\tau_{1}+\tau_{2}} v$ of $e_{2} \mid e_{3} \longrightarrow e_{3} v$

Typing of Sums

Sum type: $\tau_{1}+\tau_{2}$
Typing rules:

$$
\begin{gathered}
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \operatorname{inl}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2}} \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \operatorname{inr}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1}+\tau_{2} \quad \Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau \quad \Gamma \vdash e_{2}: \tau_{2} \rightarrow \tau}{\Gamma \vdash \text { case } e \text { of } e_{1} \mid e_{2}: \tau}
\end{gathered}
$$

Example Program

let $f:($ int $+($ int $\rightarrow \mathbf{i n t})) \rightarrow \mathbf{i n t}=$ $\lambda a:$ int $+($ int \rightarrow int $)$.
case a of $\lambda y \cdot y+1 \mid \lambda g . g 35$ in
let $h:$ int \rightarrow int $=\lambda x:$ int. $x+7$ in
$f\left(\right.$ inr $\left._{\text {int }+(\mathbf{i n t} \rightarrow \mathbf{i n t})} h\right)$

Recursion

We saw in last lecture that we could not type recursive functions or fixed-point combinators in the simply-typed lambda calculus. So instead of trying (and failing) to define a fixed-point combinator in the simply-typed lambda calculus, we add a new primitive $\mu x: \tau$. e to the language. The evaluation rules for the new primitive will mimic the behavior of fixed-point combinators.

Recursion: Syntax

$$
e::=\cdots \mid \mu x: \tau . e
$$

Intuitively, $\mu x: \tau . e$ is the fixed-point of the function $\lambda x: \tau$.e.
Note that $\mu x: \tau$. e is not a value, regardless of whether e is a value or not.

Recursion: Operational Semantics

There is a new axiom, but no new evaluation contexts.

$$
\mu x: \tau . e \longrightarrow e\{(\mu x: \tau . e) / x\}
$$

Note that we can define the letrec $x: \tau=e_{1}$ in e_{2} construct in terms of this new expression.
letrec $x: \tau=e_{1}$ in $e_{2} \triangleq$ let $x: \tau=\mu x: \tau . e_{1}$ in e_{2}

Recursion: Typing

$$
\frac{\Gamma[x \mapsto \tau] \vdash e: \tau}{\Gamma \vdash \mu x: \tau . e: \tau}
$$

Example Program

$F A C T \triangleq \mu f: \mathbf{i n t} \rightarrow \mathbf{i n t}$.

λn : int. if $n=0$ then 1 else $n \times(f(n-1))$
letrec fact: int \rightarrow int
$=\lambda n$: int. if $n=0$ then 1 else $n \times($ fact $(n-1))$ in ...

Non-termination?

Recall operational semantics:

$$
\mu x: \tau . e \longrightarrow e\{(\mu x: \tau . e) / x\}
$$

Recall typing:

$$
\frac{\Gamma[x \mapsto \tau] \vdash e: \tau}{\Gamma \vdash \mu x: \tau . e: \tau}
$$

Non-termination

We can write non-terminating computations for any type: the expression $\mu x: \tau$. x has type τ, and does not terminate.

Although the $\mu x: \tau$. e expression is normally used to define recursive functions, it can be used to find fixed points of any type. For example, consider the following expression.

$$
\mu x:(\text { int } \rightarrow \text { bool }) \times(\text { int } \rightarrow \text { bool }) .
$$

$(\lambda n$: int. if $n=0$ then true else $((\# 2 x)(n-1))$,
λn :int. if $n=0$ then false else $((\# 1 x)(n-1)))$
This expression has type (int \rightarrow bool $) \times($ int \rightarrow bool $)$-it is a pair of mutually recursive functions; the first function returns true only if its argument is even; the second function returns true only if its argument is odd.

References: Syntax and Semantics

$$
\begin{aligned}
& e::=\cdots|\operatorname{ref} e|!e\left|e_{1}:=e_{2}\right| \ell \\
& v::=\cdots \mid \ell \\
& E::=\cdots|\operatorname{ref} E|!E|E:=e| v:=E
\end{aligned}
$$

ALLOC $\underset{<\operatorname{ref} v, \sigma>\longrightarrow<\ell, \sigma[\ell \mapsto v]>}{ } \ell \notin \operatorname{dom}(\sigma)$

$$
\text { DEREF } \underset{<!\ell, \sigma>\longrightarrow<v, \sigma>}{ } \sigma(\ell)=v
$$

Assign

$$
<\ell:=v, \sigma>\longrightarrow<v, \sigma[\ell \mapsto v]>
$$

Reference Type τ ref

- We add a new type for references: type τ ref is the type of a location that contains a value of type τ.
- For example the expression ref 7 has type int ref, since it evaluates to a location that contains a value of type int.
- Dereferencing a location of type τ ref results in a value of type τ, so !e has type τ if e has type τ ref.
- And for assignment $e_{1}:=e_{2}$, if e_{1} has type τ ref, then e_{2} must have type τ.

References: Typing

$$
\tau::=\cdots \mid \tau \operatorname{ref}
$$

$$
\begin{gathered}
\Gamma \vdash e: \tau \\
\frac{\Gamma \vdash \operatorname{ref} e: \tau \text { ref }}{\Gamma \vdash e_{1}: \tau \text { ref }:=e_{2}: \tau}
\end{gathered}
$$

References: Typing

How do we type locations?

References: Typing

Noticeable by its absence is a typing rule for location values. What is the type of a location value ℓ ? Clearly, it should be of type τ ref, where τ is the type of the value contained in location ℓ. But how do we know what value is contained in location ℓ ? We could directly examine the store, but that would be inefficient. In addition, examining the store directly may not give us a conclusive answer! Consider, for example, a store σ and location ℓ where $\sigma(\ell)=\ell$; what is the type of ℓ ?

References: Store Typings

Instead, we introduce store typings to track the types of values stored in locations. Store typings are partial functions from locations to types. We use metavariable Σ to range over store typings. Our typing relation now becomes a relation over 4
entities: typing contexts, store typings, expressions, and types. We write $\Gamma, \Sigma \vdash e: \tau$ when expression e has type τ under typing context Γ and store typing Σ.

References: Typing

$$
\begin{array}{cc}
\frac{\Gamma, \Sigma \vdash e: \tau}{\Gamma, \Sigma \vdash \text { ref } e: \tau \text { ref }} & \frac{\Gamma, \Sigma \vdash e: \tau \operatorname{ref}}{\Gamma, \Sigma \vdash!e: \tau} \\
\frac{\Gamma, \Sigma \vdash e_{1}: \tau \text { ref }}{\Gamma, \Sigma \vdash e_{1}:=e_{2}: \tau} & \Gamma, \Sigma e_{2}: \tau \\
\frac{\Gamma, \Sigma \vdash \ell: \tau \text { ref }}{} \Sigma(\ell)=\tau
\end{array}
$$

References: Soundness?

So, how do we state type soundness? Our type soundness theorem for simply-typed lambda calculus said that if $\Gamma \vdash e: \tau$ and $e \longrightarrow^{*} e^{\prime}$ then e^{\prime} is not stuck. But our operational semantics for references now has a store, and our typing judgment now has a store typing in addition to a typing context. We need to adapt the definition of type soundness appropriately. To do so, we define what it means for a store to be well-typed with respect to a typing context.

References: Soundness Aux. Def.

Store σ is well-typed with respect to typing context Γ and store typing Σ, written $\Gamma, \Sigma \vdash \sigma$, if $\operatorname{dom}(\sigma)=\operatorname{dom}(\Sigma)$ and for all $\ell \in \operatorname{dom}(\sigma)$ we have $\Gamma, \Sigma \vdash \sigma(\ell): \tau$ where $\Sigma(\ell)=\tau$.

References: Soundness Theorem

If $\emptyset, \Sigma \vdash e: \tau$ and $\emptyset, \Sigma \vdash \sigma$ and
$<e, \sigma>\longrightarrow^{*}<e^{\prime}, \sigma^{\prime}>$ then either e^{\prime} is a value, or there exists $e^{\prime \prime}$ and $\sigma^{\prime \prime}$ such that
$<e^{\prime}, \sigma^{\prime}>\longrightarrow<e^{\prime \prime}, \sigma^{\prime \prime}>$.

References: Soundness

We can prove type soundness for our language using the same strategy as for the simply-typed lambda calculus: we use preservation and progress. The progress lemma can be easily adapted for the semantics and type system for references. Adapting preservation is a little more involved, since we need to describe how the store typing changes as the store evolves. The rule Alloc extends the store σ with a fresh location ℓ, producing store σ^{\prime}. Since $\operatorname{dom}(\Sigma)=\operatorname{dom}(\sigma) \neq \operatorname{dom}\left(\sigma^{\prime}\right)$, it means that we will not have σ^{\prime} well-typed with respect to typing store Σ.

References: Soundness

Since the store can increase in size during the evaluation of the program, we also need to allow the store typing to grow as well.

References: Preservation Lemma

If $\emptyset, \Sigma \vdash e: \tau$ and $\emptyset, \Sigma \vdash \sigma$ and
$<e, \sigma>\longrightarrow<e^{\prime}, \sigma^{\prime}>$ then there exists some $\Sigma^{\prime} \supseteq \Sigma$ such that $\emptyset, \Sigma^{\prime} \vdash e^{\prime}: \tau$ and $\emptyset, \Sigma^{\prime} \vdash \sigma^{\prime}$.

