Type Inference
 CS 152 (Spring 2024)

Harvard University

Thursday, March 21, 2024

Today, we will learn about

- Type inference
- Constraint-based typing
- Unification

Type annotations

$$
\mathrm{T}-\mathrm{ABS} \frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda x: \tau . e: \tau \rightarrow \tau^{\prime}}
$$

Type inference

- Infer (or reconstruct) the types of a program
- Example: $\lambda a . \lambda b$. λc. if $a(b+1)$ then b else c

Example

$\lambda a . \lambda b . \lambda c$. if $a(b+1)$ then b else c

Example

$\lambda a . \lambda b$. λc. if $a(b+1)$ then b else c

$\lambda a:$ int \rightarrow bool. λb :int. $\lambda c:$ int. if $a(b+1)$ then b else c

Example

$$
\lambda x . \lambda y . x
$$

Example

$$
\lambda x \cdot \lambda y \cdot x
$$

$$
\lambda x: X . \lambda y: Y . x
$$

Example

$$
\lambda x \cdot \lambda y \cdot x
$$

$$
\lambda x: X . \lambda y: Y . x
$$

$\lambda x:$ int. $\lambda y:$ int. x

Example

$$
\lambda x \cdot \lambda y \cdot x
$$

$$
\lambda x: X . \lambda y: Y . x
$$

$\lambda x:$ int. $\lambda y:$ int. x

$\lambda x:$ int. $\lambda y:$ int \rightarrow int. x

Example

$$
\lambda x \cdot \lambda y \cdot x
$$

$$
\lambda x: X . \lambda y: Y . x
$$

$\lambda x:$ int. $\lambda y:$ int. x

$\lambda x:$ int. $\lambda y:$ int \rightarrow int. x

Example

$\lambda x . \lambda f . f x$

Example

$\lambda x . \lambda f . f x$

$$
\lambda x: X . \lambda f: X \rightarrow Y . f x
$$

Constraint-based Type Inference

- Type variables X, Y, Z, \ldots placeholders for types.
- Judgment「トe: $\tau \triangleright C$
- Expression e has type τ provided every constraint in set C is satisfied.
- Constraints are of the form $\tau_{1} \equiv \tau_{2}$.

Language

$$
\begin{aligned}
& e::=x|\lambda x: \tau . e| e_{1} e_{2}|n| e_{1}+e_{2} \\
& \tau::=\text { int }|X| \tau_{1} \rightarrow \tau_{2}
\end{aligned}
$$

Inference rules

$$
\begin{aligned}
& \text { CT-VAR } \frac{\Gamma \vdash x: \tau \triangleright \emptyset}{\Gamma}: \tau \in \Gamma \\
& \text { CT-INT } \frac{\Gamma \vdash: \text { int } \triangleright \emptyset}{\Gamma \vdash n}
\end{aligned}
$$

Inference rules (2)

$\mathrm{CT}-\mathrm{ADD} \frac{\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \quad \Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2}}{\Gamma \vdash e_{1}+e_{2}: \text { int } \triangleright C_{1} \cup C_{2} \cup\left\{\tau_{1} \equiv \text { int }, \tau_{2} \equiv \mathbf{i n t}\right\}}$

Inference rules (3)

$$
\begin{gathered}
\text { CT-ABS } \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2} \triangleright C}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2} \triangleright C} \\
\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \\
\Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2} \\
\text { CT-App } \frac{C^{\prime}=C_{1} \cup C_{2} \cup\left\{\tau_{1} \equiv \tau_{2} \rightarrow X\right\}}{\Gamma \vdash e_{1} e_{2}: X \triangleright C^{\prime}} X \text { is fresh }
\end{gathered}
$$

Example

$$
\vdash \lambda a: X . \lambda b: Y .2+(a(b+3))
$$

Example

$$
\vdash \lambda a: X . \lambda b: Y .2+(a(b+3))
$$

Example

$$
\vdash \lambda a: X . \lambda b: Y .2+(a(b+3))
$$

$X \rightarrow Y \rightarrow \mathbf{i n t} \triangleright\{Z \equiv \mathbf{i n t}, X \equiv$ int $\rightarrow Z, Y \equiv \mathbf{i n t}$, int \equiv int $\}$

Example

$$
\vdash \lambda a: X . \lambda b: Y .2+(a(b+3))
$$

$$
X \rightarrow Y \rightarrow \mathbf{i n t} \triangleright\{Z \equiv \mathbf{i n t}, X \equiv \text { int } \rightarrow Z, Y \equiv \text { int }, \text { int } \equiv \mathbf{i n t}\}
$$

$($ int \rightarrow int $) \rightarrow$ int \rightarrow int

Unification

- What does it mean for a set of constraints to be satisfied?
- How do we find a solution to a set of constraints (i.e., infer the types)?
- To answer these questions: we define type substitutions and unification.

Type substitutions by example

- The substitution [$X \mapsto$ int, $Y \mapsto$ int \rightarrow int $]$ maps
- type variable X to int, and
- type variable Y to int \rightarrow int.
- The same variable could occur in both the domain and range of a substitution.
- All substitutions are performed simultaneously.
- The substitution $[X \mapsto$ int, $Y \mapsto$ int $\rightarrow X$] maps
- Y to int $\rightarrow \mathbf{X}$
- (not to int \rightarrow int).

Type subsitutions (aka substitutions)

- Map from type variables to types
- Substitution of type variables, formally:

$$
\begin{aligned}
\sigma(X) & = \begin{cases}\tau & \text { if } X \mapsto \tau \in \sigma \\
X & \text { if } X \text { not in the domain of } \sigma\end{cases} \\
\sigma(\text { int }) & =\text { int } \\
\sigma\left(\tau \rightarrow \tau^{\prime}\right) & =\sigma(\tau) \rightarrow \sigma\left(\tau^{\prime}\right)
\end{aligned}
$$

Substitution in constraints

- Extended to substitution of constraints, and set of constraints:

$$
\begin{aligned}
\sigma\left(\tau_{1} \equiv \tau_{2}\right) & =\sigma\left(\tau_{1}\right) \equiv \sigma\left(\tau_{2}\right) \\
\sigma(C) & =\{\sigma(c) \mid c \in C\}
\end{aligned}
$$

Example

The substitution $\sigma=[X \mapsto$ int, $Y \mapsto$ int \rightarrow int $]$ unifies the constraint $X \rightarrow(X \rightarrow$ int $) \equiv$ int $\rightarrow Y$, since

$$
\begin{aligned}
& \sigma(X \rightarrow(X \rightarrow \text { int })) \\
= & \text { int } \rightarrow(\text { int } \rightarrow \text { int }) \\
= & \sigma(\text { int } \rightarrow Y)
\end{aligned}
$$

Unification

- Constraints are of form $\tau_{1} \equiv \tau_{2}$
- Substitution σ unifies $\tau_{1} \equiv \tau_{2}$ if $\sigma\left(\tau_{1}\right)$ is the same as $\sigma\left(\tau_{2}\right)$
- Substitution σ unifies (or satisfies) set of constraints C if it unifies every constraint in C
- So given $\vdash e: \tau \triangleright C$, we want a substitution σ that unifies C. Moreover, type of e is $\sigma(\tau)$

Unification algorithm

$$
\operatorname{unify}(C)=\sigma
$$

[]
$\operatorname{unify}\left(\left\{\tau \equiv \tau^{\prime}\right\} \cup C\right)$
if $\tau=\tau^{\prime}$ then

unify (C)

else if $\tau=X$ and X not a free variable of τ^{\prime} then
let $\sigma=\left[X \mapsto \tau^{\prime}\right]$ in
unify $(\sigma(C)) \circ \sigma$
else if $\tau^{\prime}=X$ and X not a free variable of τ then let $\sigma=[X \mapsto \tau]$ in unify $(\sigma(C)) \circ \sigma$
else if $\tau=\tau_{o} \rightarrow \tau_{1}$ and $\tau^{\prime}=\tau_{o}^{\prime} \rightarrow \tau_{1}^{\prime}$ then

$$
\operatorname{unify}\left(C \cup\left\{\tau_{0} \equiv \tau_{0}^{\prime}, \tau_{1} \equiv \tau_{1}^{\prime}\right\}\right)
$$

else fail

Unification Algorithm (Things to Note)

- Choose a constraint from set C.
- Occurs check - free variable side conditions.

Principal Types

- Recall: given $\vdash e: \tau \triangleright C$, we want a substitution σ that unifies C. Moreover, type of e is $\sigma(\tau)$.
- We want the most general solution.

Principal unifier

- A substitution σ is
less specific (or more general) than
a substition σ^{\prime},
written $\sigma \sqsubseteq \sigma^{\prime}$
if $\sigma^{\prime}=\gamma \circ \sigma$ for some substitution γ.
A principal unifier (or most general unifier) for a constraint set C is a substitution σ that satisfies C and such that $\sigma \sqsubseteq \sigma^{\prime}$ for every substitution σ^{\prime} satisfying C.

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
- $\{\mathbf{i n t} \rightarrow \mathbf{i n t} \equiv X \rightarrow Y\}$
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
- $\{\mathbf{i n t} \equiv \mathbf{i n t} \rightarrow Y\}$
- $\{Y \equiv \mathbf{i n t} \rightarrow Y\}$
- $\}$

Examples

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$

Examples

$$
\begin{aligned}
& \{X \equiv \text { int }, Y \equiv X \rightarrow X\} \\
& {[X \mapsto \text { int }, Y \mapsto \text { int } \rightarrow \text { int }] }
\end{aligned}
$$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$
- $\{$ int $\rightarrow \mathbf{i n t} \equiv X \rightarrow Y\}$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$
- $\{$ int \rightarrow int $\equiv X \rightarrow Y\}$ [$X \mapsto \mathbf{i n t}, Y \mapsto \mathbf{i n t}]$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto \mathbf{i n t}, Y \mapsto \mathbf{i n t} \rightarrow \mathbf{i n t}]$
- $\{$ int $\rightarrow \mathbf{i n t} \equiv X \rightarrow Y\}$
[$X \mapsto$ int,$Y \mapsto \mathbf{i n t}]$
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
[$X \mapsto$ int, $Y \mapsto$ int \rightarrow int $]$
- $\{$ int \rightarrow int $\equiv X \rightarrow Y\}$
[$X \mapsto$ int,$Y \mapsto$ int $]$
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
$[X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, X \mapsto U \rightarrow W]$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
[$X \mapsto$ int, $Y \mapsto$ int \rightarrow int $]$
- $\{$ int \rightarrow int $\equiv X \rightarrow Y\}$
[$X \mapsto$ int,$Y \mapsto \mathbf{i n t}]$
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
$[X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, X \mapsto U \rightarrow W]$
- $\{$ int \equiv int $\rightarrow Y\}$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$
- $\{$ int $\rightarrow \mathbf{i n t} \equiv X \rightarrow Y\}$
[$X \mapsto$ int,$Y \mapsto \mathbf{i n t}]$
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
$[X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, X \mapsto U \rightarrow W]$
- $\{$ int \equiv int $\rightarrow Y\}$

Not unifiable

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$
- $\{$ int \rightarrow int $\equiv X \rightarrow Y\}$
[$X \mapsto$ int, $Y \mapsto$ int]
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
$[X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, X \mapsto U \rightarrow W]$
- $\{\mathbf{i n t} \equiv \mathbf{i n t} \rightarrow Y\}$

Not unifiable

- $\{Y \equiv$ int $\rightarrow Y\}$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$
- $\{$ int \rightarrow int $\equiv X \rightarrow Y\}$
[$X \mapsto$ int, $Y \mapsto$ int]
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
$[X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, X \mapsto U \rightarrow W]$
- $\{$ int \equiv int $\rightarrow Y\}$

Not unifiable

- $\{Y \equiv$ int $\rightarrow Y\}$

Not unifiable

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$
- $\{$ int \rightarrow int $\equiv X \rightarrow Y\}$
[$X \mapsto$ int, $Y \mapsto$ int]
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
$[X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, X \mapsto U \rightarrow W]$
- $\{$ int $\equiv \mathbf{i n t} \rightarrow Y\}$

Not unifiable

- $\{Y \equiv$ int $\rightarrow Y\}$

Not unifiable

- $\}$

Examples

- $\{X \equiv$ int,$Y \equiv X \rightarrow X\}$
$[X \mapsto$ int,$Y \mapsto$ int \rightarrow int $]$
- $\{$ int \rightarrow int $\equiv X \rightarrow Y\}$
[$X \mapsto$ int, $Y \mapsto$ int]
- $\{X \rightarrow Y \equiv Y \rightarrow Z, Z \equiv U \rightarrow W\}$
$[X \mapsto U \rightarrow W, Y \mapsto U \rightarrow W, X \mapsto U \rightarrow W]$
- $\{$ int \equiv int $\rightarrow Y\}$

Not unifiable

- $\{Y \equiv$ int $\rightarrow Y\}$

Not unifiable

- \{\}
[]

Properties of the algorithm unify

1. unify (C) halts, either by failing or by returning a substitution for all C;
2. If unify $(C)=\sigma$, then σ is a unifier for C;
3. if δ is a unifier for C, then unify $(C)=\sigma$ with $\sigma \sqsubseteq \delta$.

Proving 1. termination

Define a lexicographic measure on a constraint set C, called degree: pair (m, n) where m is the number of distinct type variables in C and n is the total size of the types in C.

See that each recursive call has a smaller degree.

Proving 2. unifier

Induction on the number of recursive calls in the computation of unify (C).

Variable cases depend on observation:
If σ unifies $[X \mapsto \tau] D$, then $\sigma \circ[X \mapsto \tau]$ unifies $\{X \equiv \tau\} \cup D$ for any constraint set D.

Proving 3. principal

Again, induction on the number of recursive calls in the computation of unify (C).

- If C is empty, then unify (C) immediately returns the trivial substitution []; since $\delta=\delta \circ[]$, we have [] $\sqsubseteq \delta$ as required.
- If C is non-empty, then unify (C) chooses some constraint $\tau \equiv \tau^{\prime}$ and continues on the shape. (See TAPL.)

Let-Polymorphism

