
Axiomatic semantics
CS 152 (Spring 2024)

Harvard University

Tuesday, April 2, 2024

1 / 39

Today, we will learn about

▶ Axiomatic Semantics
▶ Pre- and Post-Conditions
▶ Partial and Total Correctness
▶ Validity of Assertions and Partial Correctness
▶ Hoare Logic

2 / 39

Meaning of Programs by

operational model how programs execute

denotational model what programs compute

axiomatic model logical formulas satisfied by the
program

3 / 39

Axiomatic Semantics

▶ give specifications for what programs are
supposed to compute

▶ define the meaning of programs in terms of
logical formulas satisfied by the program

4 / 39

Pre- and Post-Conditions

{Pre} c {Post}

“If Pre holds before c , and c terminates,
then Post holds after c .”

5 / 39

Pre- and Post-Conditions

{Pre} c {Post}
“If Pre holds before c , and c terminates,

then Post holds after c .”

5 / 39

Partial Correctness and Total Correctness

{Pre} c {Post}

“If Pre holds before c , and c terminates, then

Post holds after c .”

[Pre] c [Post]

“If Pre holds before c then c will terminate and
Post will hold after c .”

6 / 39

Partial Correctness and Total Correctness

{Pre} c {Post}

“If Pre holds before c , and c terminates, then

Post holds after c .”

[Pre] c [Post]

“If Pre holds before c then c will terminate and
Post will hold after c .”

6 / 39

Example

{foo = 0 ∧ bar = i}
baz := 0;

while foo ̸= bar do

(baz := baz− 2; foo := foo + 1)

{baz = −2i}

7 / 39

Total Correctness Example

[foo = 0 ∧ bar = i

∧i ≥ 0]

baz := 0;

while foo ̸= bar do

(baz := baz− 2; foo := foo + 1)

[baz = −2i]

8 / 39

Invalid Example

{foo = 0 ∧ bar = i}
baz := 0;

while foo ̸= bar do

(baz := baz + foo; foo := foo + 1)

{baz = i}

9 / 39

Invalid Example 2

{a = i}
x := 3;

y := a

{y = i}

Find a such that this triple is invalid.

10 / 39

Formalization

▶ What logic do we use for writing assertions?
That is, what can we express in pre- and
post-condition?

▶ What does it mean that an assertion is valid?
What does it mean that a partial correctness
statement {Pre} c {Post} is valid?

▶ How can we prove that a partial correctness
statement is valid?

11 / 39

Language of Assertions

P ,Q ∈ Assn P ::= true | false | a1 < a2 | a1 = a2
| P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2

| ¬P | ∀i . P | ∃i . P
a ∈ Aexp a ::= n | x | a1 + a2 | a1 × a2 | i
i , j ∈ LVar

12 / 39

Validity of Assertions

13 / 39

Validity of Assertions

▶ Interpretation I:

I : LVar → Int

▶ “P is valid in store σ under interpretation I”

σ ⊨I P

▶ will write σ ̸⊨I P whenever σ ⊨I P doesn’t hold

14 / 39

Validity of Assertions
σ ⊨I true (always)

σ ⊨I a1 < a2 if AInterp[[a1]](σ, I) < AInterp[[a2]](σ, I)

σ ⊨I a1 = a2 if AInterp[[a1]](σ, I) = AInterp[[a2]](σ, I)

σ ⊨I P1 ∧ P2 if σ ⊨I P1 and σ ⊨I P2

σ ⊨I P1 ∨ P2 if σ ⊨I P1 or σ ⊨I P2

σ ⊨I P1 ⇒ P2 if σ ̸⊨I P1 or σ ⊨I P2

σ ⊨I ¬P if σ ̸⊨I P

σ ⊨I ∀i . P if ∀k ∈ Int. σ ⊨I [i 7→k] P

σ ⊨I ∃i . P if ∃k ∈ Int. σ ⊨I [i 7→k] P

AInterp[[n]](σ, I) = n

AInterp[[x]](σ, I) = σ(x)

AInterp[[i]](σ, I) = I (i)

AInterp[[a1 + a2]](σ, I) = AInterp[[a1]](σ, I) +AInterp[[a2]](σ, I)
15 / 39

Validity of Partial Correctness

16 / 39

Validity of Partial Correctness

{P} c {Q} is valid in store σ and interpretation I ,
written σ ⊨I {P} c {Q}, if:

∀σ′. if σ ⊨I P and C[[c]]σ = σ′ then σ′ ⊨I Q

A partial correctness triple is valid (written
⊨ {P} c {Q}), if it is valid in any store and
interpretation:

∀σ, I . σ ⊨I {P} c {Q}.

17 / 39

Validity of Partial Correctness

{P} c {Q} is valid in store σ and interpretation I ,
written σ ⊨I {P} c {Q}, if:

∀σ′. if σ ⊨I P and C[[c]]σ = σ′ then σ′ ⊨I Q

A partial correctness triple is valid (written
⊨ {P} c {Q}), if it is valid in any store and
interpretation:

∀σ, I . σ ⊨I {P} c {Q}.

17 / 39

Outlook

Now we know what we mean when we say
“assertion P holds” or “partial correctness
statement {P} c {Q} is valid.”

18 / 39

Hoare logic

19 / 39

Hoare logic
How do we show that a partial correctness
statement {P} c {Q} holds?

We know that {P} c {Q} is valid if it holds for all
stores and interpretations: ∀σ, I . σ ⊨I {P} c {Q}.
Furthermore, showing that σ ⊨I {P} c {Q} requires
reasoning about the execution of command c (that
is, C[[c]]), as indicated by the definition of validity.
It turns out that there is an elegant way of deriving
valid partial correctness statements, without having
to reason about stores, interpretations, and the
execution of c . We can use a set of inference rules
and axioms, called Hoare rules, to directly derive
valid partial correctness statements. The set of rules
forms a proof system known as Hoare logic.

20 / 39

Hoare logic
How do we show that a partial correctness
statement {P} c {Q} holds?
We know that {P} c {Q} is valid if it holds for all
stores and interpretations: ∀σ, I . σ ⊨I {P} c {Q}.
Furthermore, showing that σ ⊨I {P} c {Q} requires
reasoning about the execution of command c (that
is, C[[c]]), as indicated by the definition of validity.
It turns out that there is an elegant way of deriving
valid partial correctness statements, without having
to reason about stores, interpretations, and the
execution of c . We can use a set of inference rules
and axioms, called Hoare rules, to directly derive
valid partial correctness statements. The set of rules
forms a proof system known as Hoare logic.

20 / 39

Hoare logic rules

21 / 39

Hoare logic rules

These set of Hoare rules represent an inductive
definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a
theorem in Hoare logic, written ⊢ {P} c {Q}, if we
can build a finite proof tree for it.

22 / 39

Hoare logic rules (Skip)

Skip
⊢ {P} skip {P}

23 / 39

Hoare logic rules (Assign)

Assign
⊢ {P[a/x]} x := a {P}

24 / 39

Puzzler: Why is this rule wrong?

WRONG-Assign
⊢ {true} x := a {x = a}

25 / 39

Hoare logic rules (Seq)

Seq
⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1; c2 {Q}

26 / 39

Hoare logic rules (If)

If
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

27 / 39

Hoare logic rules (While)

While
⊢ {P ∧ b} c {P}

⊢ {P} while b do c {P ∧ ¬b}

28 / 39

Hoare logic rules (Consequence)

Consequence

⊨ (P ⇒ P ′)
⊨ (Q ′ ⇒ Q)

⊢ {P ′} c {Q ′}
⊢ {P} c {Q}

29 / 39

Two kinds of partial correctness assertions

a) valid partial correctness statements
⊨ {P} c {Q}, which hold for all stores and
interpretations, according to the semantics of
c ; and

b) Hoare logic theorems ⊢ {P} c {Q}, that is, a
partial correctness statement that can be
derived using Hoare rules.

30 / 39

Soundness and (Relative) Completeness of
Hoare Logic

▶ soundness:

does ⊢ {P} c {Q} imply ⊨ {P} c {Q}?

yes
▶ completeness:

does ⊨ {P} c {Q} imply ⊢ {P} c {Q}?

qualified yes: if ⊨ {P} c {Q} then there is a
proof of {P} c {Q} using the rules of Hoare
logic, provided there are proofs for the validity
of assertions that occur in the rule of
consequence ⊨ (P ⇒ P ′) and ⊨ (Q ′ ⇒ Q).

31 / 39

Soundness and (Relative) Completeness of
Hoare Logic

▶ soundness:

does ⊢ {P} c {Q} imply ⊨ {P} c {Q}?

yes

▶ completeness:

does ⊨ {P} c {Q} imply ⊢ {P} c {Q}?

qualified yes: if ⊨ {P} c {Q} then there is a
proof of {P} c {Q} using the rules of Hoare
logic, provided there are proofs for the validity
of assertions that occur in the rule of
consequence ⊨ (P ⇒ P ′) and ⊨ (Q ′ ⇒ Q).

31 / 39

Soundness and (Relative) Completeness of
Hoare Logic

▶ soundness:

does ⊢ {P} c {Q} imply ⊨ {P} c {Q}?

yes
▶ completeness:

does ⊨ {P} c {Q} imply ⊢ {P} c {Q}?

qualified yes: if ⊨ {P} c {Q} then there is a
proof of {P} c {Q} using the rules of Hoare
logic, provided there are proofs for the validity
of assertions that occur in the rule of
consequence ⊨ (P ⇒ P ′) and ⊨ (Q ′ ⇒ Q).

31 / 39

Soundness and (Relative) Completeness of
Hoare Logic

▶ soundness:

does ⊢ {P} c {Q} imply ⊨ {P} c {Q}?

yes
▶ completeness:

does ⊨ {P} c {Q} imply ⊢ {P} c {Q}?

qualified yes: if ⊨ {P} c {Q} then there is a
proof of {P} c {Q} using the rules of Hoare
logic, provided there are proofs for the validity
of assertions that occur in the rule of
consequence ⊨ (P ⇒ P ′) and ⊨ (Q ′ ⇒ Q).

31 / 39

Proof of Soundness (Overview)

By induction on the derivation ⊢ {P} c {Q}.
It suffices to show, for each inference rule, that if
each hypothesis holds semantically, then the
conclusion holds semantically.

32 / 39

Soundness Proof Case (If)

If
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

Assume ⊨ {P ∧ b} c1 {Q} and ⊨ {P ∧¬b} c2 {Q}.
Let I be an interpretation.
Suppose σ ⊨I P . Either σ ⊨i b or σ ⊨i ¬b.
If σ ⊨i b, then σ ⊨ P ∧ b so C[[c1]]σ ⊨I Q.
Similarly for σ ⊨i ¬b.
Thus, ⊨ {P} if b then c1 else c2 {Q}.

33 / 39

Factorial example using Hoare Logic

{X = x && X >= 0 && Y = 1}
{Y * X! = x! && X >= 0}
while X != 0 do

({Y * X! = x! && X >= 0 && X != 0}
{(Y * X) * (X - 1)! = x! && (X - 1) >= 0}
Y := Y * X;

{Y * (X - 1)! = x! && (X - 1) >= 0}
X := X - 1

{Y * X! = x! && X >= 0})
{Y * X! = x! && X >= 0 && ¬(X != 0)}
{Y = x!}

34 / 39

Weakest Preconditions and Verification
Conditions

The weakest precondition wpc(c ,Q) is a
precondition such that the Hoare triple
{wpc(c ,Q)} c {Q} is valid and any other valid
precondition P is stronger, i.e. ⊨ {P} c {Q} valid
iff P ⇒ wpc(c ,Q).

35 / 39

Verification Conditions

The verification condition vc(c ,Q) is a valid
precondition, so {vc(c ,Q)} c {Q} is guaranteed to
be valid. However, it is not guaranteed to be the
weakest precondition. This means that if
P ⇒ vc(c ,Q), then we can be sure that
⊨ {P} c {Q}, just from the rule of consequence.
However, if P ⇒ vc(c ,Q) does not hold, then have
no way of knowing whether it was because the
Hoare triple {P} c {Q} is not valid, or whether the
triple is valid, but vc(c ,Q) was just not good
enough to prove it.

36 / 39

Weakest Preconditions and Verification
Conditions

▶ wpc(skip,Q) = Q

▶ wpc(x := a,Q) = Q[a/x]

▶ wpc(c1; c2,Q) = wpc(c1,wpc(c2,Q))

▶ wpc(if b then c1 else c2,Q) =
(b ∧ wpc(c1,Q)) ∨ (¬b ∧ wpc(c2,Q))

37 / 39

Weakest Precondition While-Loop

Let W = wpc(while b do c ,Q). Then,

W = b ⇒ wpc(c ,W) ∧ ¬b ⇒ Q

38 / 39

Verification Condition While-Loop

vc(while b do c ,Q) =

I ∧ ∀x1, . . . xn I ⇒ (b ⇒ vc(c , I) ∧ ¬b ⇒ Q)

where xi are variables modified by c .

39 / 39

