
CS153: Compilers
Lecture 1: Introduction

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

What is this course about?

 2

Source Code

Target Code

?Compiler!

Stephen Chong, Harvard University

What is this course about?

•How are programs written in a high-level
language transformed into machine code?

•How can we ensure a program is somewhat
meaningful?

•How is the program’s memory managed?
•How can we analyze programs to discover

invariant properties and improve their runtime
performance?

 3

Stephen Chong, Harvard University

Basic Architecture

 4

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Target Code

Back end

Front end

Stephen Chong, Harvard University

Front end

•Lexing & Parsing
•From strings to data structures
•Usually split into two phases:

 5

Strings/Files Tokens
Abstract

Syntax Trees

Lexing Parsing

Stephen Chong, Harvard University

Parsing tools

•Parsing is something that happens in essentially all
applications.
•E.g., Google search bar, calendar, etc.

•First step in going from raw data to information

•Lots of CS theory (121) to help out
•Regular expressions (finite state automata)
•Context-free grammars (push-down automata)
•These abstractions show up in optimization too!

•Lots of tool support
•E.g., Lex and Yacc; Antlr, parsing combinators; etc.

 6

Stephen Chong, Harvard University

Elaboration

•Type-checking
•Resolve variables, modules, etc.
•Check that operations are given values of the right

types
•Infer types for sub-expressions
•Check for other safety/security problems

 7

Untyped Abstract
Syntax Trees

Typed Abstract
Syntax Trees

Stephen Chong, Harvard University

Lowering

•Translate high-level features into a small number
of target-like constructs
•e.g., while, for, do-loops all compiled to code using
goto’s

•e.g., objects, closures to records and function pointers
•e.g., make type-tests, array-bounds checks, etc. explicit

 8

Typed Abstract
Syntax Trees

Intermediate Code
ASTs

Stephen Chong, Harvard University

Optimization

•Rewrite expensive sequences of operations into
less expensive
•e.g., constant folding: 3+4 → 7
•e.g., lift an invariant computation out of a loop
•e.g., parallelize a loop

 9

Intermediate Code
ASTs

Intermediate Code
ASTs

Optimization

Stephen Chong, Harvard University

Code generation

•Translate intermediate code into target code
•Register assignment
•Instruction selection
•Instruction scheduling
•Machine-specific optimization

 10

Intermediate Code
ASTs

Machine Code

Stephen Chong, Harvard University

Who should take CS153?

•People fascinated by languages & compilers
•Why does[n’t] this language include this feature?
•Systems programmers

•Know the one tool that you use every day.
•What can[’t] a compiler do well?

•Architecture designers
•Interdependence between compiler and architecture
•See Intel iAPX 432 and Intel Itanium (compiler-related) failures; register

windows
•These days, architecture folks use compilers too!

•API designers
•A language is the ultimate API
•c.f., Facebook

 11

Stephen Chong, Harvard University

Suggested prerequisites

•Ideally CS51 and CS61
•CS51 alone is likely enough

•We assume
•Knowledge of OCaml
•A bit about how machines work
• e.g., 2’s complement arithmetic

•First project is a good time to get up to speed
•If you don’t know something, ask!

 12

Stephen Chong, Harvard University

Course Staff

•Contact course staff at  
 cs153-staff@seas.harvard.edu  
or via Piazza

•Don’t send email to individual course staff  
(slower response, all of us need to be informed)

 13

Aaron 
 Bembenek

Andrew  
 Wong-Rolle

mailto:cs153-staff@seas.harvard.edu

Stephen Chong, Harvard University

Administrivia

•Website
•https://www.seas.harvard.edu/courses/cs153

•Piazza
•https://piazza.com/class#fall2018/cs153
•In general, post questions publicly unless you think question or

answer might be inappropriate sharing of project solutions
•Can post anonymously to classmates if you wish

•Office hours
•Will be announced later. Start next week
•Look on course website

•No section
•TF hours will be spent on office hours instead

 14

https://www.seas.harvard.edu/courses/cs153
https://piazza.com/class#fall2018/cs153

Stephen Chong, Harvard University

Textbook

•Modern Compiler
Implementaton in ML by
Andrew W. Appel
•Recommended but not required.

•In most cases, class materials
should suffice

•Lecture slides posted after the
lecture  
(or before if they are ready in time)

 15

https://www.cs.princeton.edu/~appel/modern/ml/
https://www.cs.princeton.edu/~appel/modern/ml/

Stephen Chong, Harvard University

Programming environment

•OCaml
•Ideal for writing compilers!

•SPIM
•MIPS simulator
•Ideal target for compilers.

•GitHub
•...

 16

Stephen Chong, Harvard University

Assessment

•Roughly
•70% projects (~8 projects total)
•25% final exam
•5% participation
• E.g., Piazza posting/answering, attend lectures and engage
in discussion, attend office hours, ...

 17

Stephen Chong, Harvard University

Projects

•8(ish) projects
•Mostly implementing parts of a compiler
•Typically 1-2 weeks per project
•In OCaml
•Plan ahead!

•No late days! No late submissions!
• But plenty of time to work on it

•All submissions must type-check and compile
•Multiple projects out at same time

•Implementation heavy course!
•Strongly encourage you to work with a partner!

•Next lecture will give Google form if you are looking for project partner
 18

Stephen Chong, Harvard University

Projects

•1. MIPS simulator
•Understand the machine  

we are targeting

•2. Fortran-ish front end
•Parsing and lexing

•3. Fortran-ish → MIPS
•Simple front-end
•Simple lowering & code generation

•4. C-ish → MIPS
•1st-order procedures, structs, arrays

 19

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Back end

Front end

Target Code

1

2

3

4

Stephen Chong, Harvard University

Projects

•5. Scheme-ish → C-ish
•Higher-order procedures,  

type-tests

•6. ML-ish → Scheme-ish
•Type inference

•7. Algebraic optimization
•Tree-based rewriting

•8. Control-flow graphs
•Rip out naïve C-ish backend and replace with  

one based on control-flow graphs.
•Implement liveness analysis
•Implement graph-coloring register allocation

 20

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Back end

Front end

Target Code

1

2

3

45

6

7

8

Stephen Chong, Harvard University

Learning outcomes

•Understand how compilers work
•Parsing, type-checking & inference, lowering, analysis,

optimization, code generation.
•How to rewrite your code so that the compiler can do

its job better.

•Programming experience
•Ability to abstract and improve an API with a

formal language

 21

Stephen Chong, Harvard University

Collaboration/Academic integrity

•Discussion and exchange of ideas good!
•Consult with your classmates as you work on problem sets.

•But: work you submit for evaluation should be result only
of your and your project partner's efforts

•Do not share code nor accept code from other students
•Do not post course materials (including projects, solutions,

exams, etc.) to websites (including public GitHub
repositories, and similar) or course-content archives

•Don't look on the web for solutions
•If you are ever in doubt, ask the course staff to clarify

what is and isn't appropriate.
 22

Stephen Chong, Harvard University

Diversity and Inclusion

•Aim: create a learning environment that supports
a diversity of thoughts, perspectives and
experiences, and honors your identities
(including race, gender, class, sexuality, religion,
ability, etc.)

 23

Stephen Chong, Harvard University

Diversity and Inclusion

•To help accomplish this:
•If you have a name and/or set of pronouns that differ from those that appear in

your official Harvard records, please let me know!
•If you feel like your performance in the class is being impacted by your

experiences outside of class, please don't hesitate to come and talk with me. I
want to be a resource for you. If you prefer to speak with someone outside of the
course, members of the SEAS Committee on Diversity, Inclusion, and Belonging
are excellent resources.

•I (like many people) am still in the process of learning about diverse perspectives
and identities. If something was said (by anyone) in class, office hours, Piazza, or
project group work that made you feel uncomfortable, please talk to me about it.

•As a participant in course discussions, office hours, and group projects, you should
also strive to honor the diversity of your classmates.

•If you ever are struggling and just need someone to talk to, feel free to
stop by office hours, or to reach out to me and we can arrange a private
meeting.

 24

Stephen Chong, Harvard University

Questions/comments?

 25

