CS153: Compilers
Lecture 6: LR Parsing

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Announcements

- Proj 1 out
 - Due today Thursday Sept 20, 11.59pm
- Proj 2 out
 - Due Thursday Oct 4 (14 days away)
Today

• LR Parsing
 • Constructing a DFA and LR parsing table
 • Using Yacc
LR(k)

Left-to-right parse

Rightmost derivation

Derivation expands the rightmost non-terminal

(Constructs derivation in reverse order!)

k-symbol lookahead
LR(k)

- Basic idea: LR parser has a stack and input
 - Given contents of stack and k tokens look-ahead parser does one of following operations:
 - Shift: move first input token to top of stack
 - Reduce: top of stack matches rule, e.g., $X \rightarrow A B C$
 - Pop C, pop B, pop A, and push X
Example

Stack

Input

\[
E \rightarrow \text{int} \\
E \rightarrow (E) \\
E \rightarrow E + E
\]

(3 + 4) + (5 + 6)

Shift (on to stack
Example

\[\begin{align*}
E &\rightarrow \text{int} \\
E &\rightarrow (E) \\
E &\rightarrow E + E
\end{align*} \]

Stack

\[
(\\
\]
Shift (on to stack
Shift 3 on to stack

Input

\[3 + 4) + (5 + 6) \]
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack
(3
Shift (on to stack
Shift 3 on to stack
Reduce using rule \(E \rightarrow \text{int} \)

Input
+4) + (5 + 6)
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack
\((E) \)

Input
\(+4) + (5 + 6)\)

Shift (on to stack
Shift 3 on to stack
Reduce using rule \(E \rightarrow \text{int} \)
Shift + on to stack
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack

\((E + \)

Input

\(4) + (5 + 6) \)

Shift (on to stack
Shift 3 on to stack
Reduce using rule \(E \rightarrow \text{int} \)
Shift + on to stack
Shift 4 on to stack
Example

\[
E \rightarrow \text{int} \\
E \rightarrow (E) \\
E \rightarrow E + E
\]

Stack

(\(E + 4 \))

Input

) + (5 + 6)

Shift (on to stack
Shift 3 on to stack
Reduce using rule \(E \rightarrow \text{int} \)
Shift + on to stack
Shift 4 on to stack
Reduce using rule \(E \rightarrow \text{int} \)
Example

\[
E \rightarrow \text{int} \\
E \rightarrow (E) \\
E \rightarrow E + E
\]

Stack

\((E + E)\)

Input

\((5 + 6)\)

Shift (on to stack
Shift 3 on to stack
Reduce using rule \(E \rightarrow \text{int}\)
Shift + on to stack
Shift 4 on to stack
Reduce using rule \(E \rightarrow \text{int}\)
Reduce using rule \(E \rightarrow E + E\)
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack

(\ E \)

Input

\) + (5 + 6 \)

Reduce using rule \[E \rightarrow E + E \]

Shift \) on to stack
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack

\((E) \)

Input

\(+ (5 + 6)\)

Reduce using rule \(E \rightarrow E + E \)

Shift \() \) on to stack

Reduce using rule \(E \rightarrow (E) \)
Example

$E \rightarrow \text{int}$
$E \rightarrow (E)$
$E \rightarrow E + E$

Stack

E

Input

$+(5+6)$

Reduce using rule $E \rightarrow E + E$
Shift $)$ on to stack
Reduce using rule $E \rightarrow (E)$
Shift $+$ on to stack
Example

$E \rightarrow \text{int}$
$E \rightarrow (E)$
$E \rightarrow E + E$

Stack

$E +$

Input

(5 + 6)

Reduce using rule $E \rightarrow E + E$
Shift) on to stack
Reduce using rule $E \rightarrow (E)$
Shift + on to stack

... and so on ...
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack

\[E + (E) \]

Reduce using rule \[E \rightarrow E + E \]
Shift \() \) on to stack
Reduce using rule \[E \rightarrow (E) \]
Shift + on to stack

... and so on ...

Input

\[+6) \]
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack

\[E + (E + E) \]

Input

Reduce using rule \(E \rightarrow E + E \)
Shift \() \) on to stack
Reduce using rule \(E \rightarrow (E) \)
Shift + on to stack

... and so on ...
Example

\[
E \rightarrow \text{int} \\
E \rightarrow (E) \\
E \rightarrow E + E
\]

Stack

\[
E + (E)
\]

Reduce using rule \(E \rightarrow E + E \)

Shift \() \) on to stack

Reduce using rule \(E \rightarrow (E) \)

Shift + on to stack

... and so on ...
Example

\[E \rightarrow \text{int} \]
\[E \rightarrow (E) \]
\[E \rightarrow E + E \]

Stack

\[E + E \]

Input

Reduce using rule \(E \rightarrow E + E \)

Shift \() \) on to stack

Reduce using rule \(E \rightarrow (E) \)

Shift + on to stack

... and so on ...
Example

\[
E \to \text{int} \\
E \to (E) \\
E \to E + E
\]

Stack \hspace{2cm} \text{Input}

\[E\]

Reduce using rule \(E \to E + E\)
Shift \() \) on to stack
Reduce using rule \(E \to (E)\)
Shift + on to stack

... and so on ...
Rightmost derivation

• LR parsers produce a rightmost derivation

• But do reductions in reverse order
What Action to Take?

• How does the LR(k) parser know when to shift and to reduce?

• Uses a DFA
 • At each step, parser runs DFA using symbols on stack as input
 • Input is sequence of terminals and non-terminals from bottom to top
 • Current state of DFA plus next k tokens indicate whether to shift or reduce
Building the DFA for LR parsing

• Sketch only. For details, see Appel

• States of DFA are sets of **items**
 • An **item** is a production with an indication of current position of parser
 • E.g., Item $E \rightarrow E \cdot + E$ means that for production $E \rightarrow E + E$, we have parsed first expression E have yet to parse $+$ token
 • In general item $X \rightarrow \gamma \cdot \delta$ means γ is at the top of the stack, and at the head of the input there is a string derivable from δ
Example: LR(0)

Add new start symbol with production to indicate end-of-file

First item of first state: at the start of input
State 1: item is about to parse S: add productions for S
From state 1, can take x, moving us to state 2
From state 1, can take $($, moving us to state 3
State 3: item is about to parse L: add productions for L
State 3: item is about to parse S: add productions for S
Example: LR(0)

State 1: can take S, moving us to state 4

State 4 is an accepting state (if at end of input)
Example: LR(0)

```
S' → .S eof
S → .( L )
S → .x

S' → S. eof
S → .( L )
S → .x

S → ( .L )
L → . S
L → . L, S
S → .( L )
S → .x

S' → S. eof
S → ( L )
S → x
L → S
L → L, S
```

Continue to add states based on next symbol in item
Example LR(0)

- Build action table
- If state contains item $X \rightarrow \gamma . \text{eof}$ then accept
- If state contains item $X \rightarrow \gamma$. then reduce $X \rightarrow \gamma$
- If state i has edge to j with terminal then shift

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>shift</td>
</tr>
<tr>
<td>2</td>
<td>reduce $S \rightarrow x$</td>
</tr>
<tr>
<td>3</td>
<td>shift</td>
</tr>
<tr>
<td>4</td>
<td>accept</td>
</tr>
<tr>
<td>5</td>
<td>shift</td>
</tr>
<tr>
<td>6</td>
<td>reduce $S \rightarrow (L)$</td>
</tr>
<tr>
<td>7</td>
<td>reduce $L \rightarrow S$</td>
</tr>
<tr>
<td>8</td>
<td>shift</td>
</tr>
<tr>
<td>9</td>
<td>reduce $L \rightarrow L , S$</td>
</tr>
</tbody>
</table>
LR(1)

- In practice, LR(1) is used for LR parsing
 - not LR(0) or LR(k) for k>1

- Item is now pair \((X \rightarrow \gamma . \delta, x)\)
 - Indicates that \(\gamma\) is at the top of the stack, and at the head of the input there is a string derivable from \(\delta x\) (where \(x\) is terminal)
 - Algorithm for constructing state transition table and action table adapted. See Appel for details.
 - Closure operation when constructing states uses FIRST(), incorporating lookahead token
 - Action table columns now terminals (i.e., 1-token lookahead)
 - Note: state transition relation and action table typically combined into single table, called parsing table
LR Parsing and Ambiguous Grammars

• If grammar is ambiguous, we can’t construct a DFA!

• We get conflicts: don’t know which action to take
 • Shift-reduce conflicts: don’t know whether to shift or reduce
 • Reduce-reduce conflicts: don’t know which production to use to reduce
Dangling Else Problem

• Many language have productions such as
 \[S \rightarrow \text{if } E \text{ then } S \text{ else } S \]
 \[S \rightarrow \text{if } E \text{ then } S \]
 \[S \rightarrow \ldots \]

• Program \(\text{if a then if b then s1 else s2} \) could be
 either \(\text{if a then } \{ \text{if b then s1 } \} \text{ else s2} \)
 or \(\text{if a then } \{ \text{if b then s1 else s2} \} \)

• In LR parsing table there will be a shift-reduce conflict
 • \(S \rightarrow \text{if } E \text{ then } S. \) with lookahead else: reduce
 • \(S \rightarrow \text{if } E \text{ then } S. \text{else } S \) with any lookahead: shift
 • Which action corresponds to which interpretation of
 \(\text{if a then if b then s1 else s2} ? \)
Resolving Ambiguity

• Could rewrite grammar to avoid ambiguity
 • E.g.,

\[
S \rightarrow O \\
O \rightarrow V := E \\
O \rightarrow \text{if } E \text{ then } O \\
O \rightarrow \text{if } E \text{ then } C \text{ else } O \\
C \rightarrow V := E \\
C \rightarrow \text{if } E \text{ then } C \text{ else } C
\]
Resolving Ambiguity

• Or tolerate conflicts, indicating how to resolve conflict
 • E.g., for dangling else, prefer shift to reduce.
 • i.e., for if a then if b then s1 else s2
 prefer if a then {if b then s1 else s2 }
 over if a then { if b then s1 } else s2
 • i.e., else binds to closest if
 • Expression grammars can express operator-precedence by resolution of conflicts
• Use sparingly! Only in well-understood cases
 • Most conflicts are indicative of ill-specified grammars
Using Yacc

• Yet Another Compiler-Compiler
• Originally developed in early 1970s
• Various versions/reimplimentations
 • Berkeley Yacc, Bison, Ocamlyacc, ...
• From a suitable grammar, constructs an LALR(1) parser
 • A kind of LR parser, not as powerful as LR(1)
 • Most practical LR(1) grammars will be LALR(1) grammars
Ocamlyacc

- Usage: `ocamlyacc options grammar.mly`
- Produces output files
 - `grammar.ml`: OCaml code for a parser
 - `grammar.mli`: interface for parser
Structure of ocamlyacc File

- Header and trailer are arbitrary OCaml code, copied to the output file
- Declarations of tokens, start symbols, OCaml types of symbols, associativity and precedence of operators
- Rules are productions for non-terminals, with **semantic actions** (OCaml expressions that are executed with production is reduced, to produce value for symbol)
Ocamlyacc example

• See Lec03-parser-eg.mll and output files Lec03-parser-eg.ml and Lec03-parser-eg.mli

• Typically, the .mly declares the tokens, and the lexer opens the parser module