
CS153: Compilers
Lecture 7:  
Simple Code Generation

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•New TF! Nicholas Hasselmo
•CS Nights: Mondays 8pm-10pm in MD 119.

Pizza provided!

•Project 2 out
•Due Thursday Oct 4 (9 days remaining)

•Project 3 released today
•Due Tuesday Oct 9 (14 days)

•Project 4 will be released Tuesday Oct 2
 2

Stephen Chong, Harvard University

Today

•Code generation: mapping F-ish code to MIPS
code
•Variables
•Nested expressions
•Statements
•Improving things:
• Simple constant folding
• Expressions for conditional branches
•Register allocation for binary expressions

 3

Stephen Chong, Harvard University

Preliminaries

•Fortran programming language
•Name from Formula Translation
•Originally developed by IBM in 1950s for scientific and

engineering applications
•One of first high-level programming languages
• i.e., a replacement for hand-coding assembly

•Influenced C programming language
•Early version had no functions or procedures
•Current versions still popular for high-performance computing

•Our source language is Fish (Fortran-ish)
•No functions/procedures, imperative, structured control flow

•Our target language is MIPS assembly
 4

Stephen Chong, Harvard University

Source

•Expressions

 5

type exp =
 Var of var
 | Int of int
 | Binop of exp * binop * exp
 | Not of exp
 | Or of exp * exp
 | And of exp * exp
 | Assign of var * exp

Stephen Chong, Harvard University

Source

•Statements

 6

type stmt =
 Seq of stmt * stmt
 | If of exp * stmt * stmt
 | While of exp * stmt
 | For of exp * exp * exp * stmt
 | Exp of exp
 | Return of exp

Stephen Chong, Harvard University

MIPS

 7

type label = string

type reg =  
 R0 | R1 | R2 | … | R31

type operand =
 Reg of reg
| Immed of word

Stephen Chong, Harvard University

MIPS

 8

type inst =
 Add of reg * reg * operand
 | Li of reg * word
 | Slt of reg * reg * operand
 | Beq of reg * reg * label
 | Bgez of reg * label
 | J of label
 | La of reg * label
 | Lw of reg * reg * word
 | Sw of reg * reg * word
 | Label of label | ...

Stephen Chong, Harvard University

Variables

•Fish has only global variables
•Initial approach: put each variable in the data segment

•Part of object file that contains program’s initialized data
•Data segment is loaded into memory when object file loads

•.data directive instructs assembler to put data in data
segment

•E.g.,

 9

.data

.align 0
x: .word 0
y: .word 0
z: .word 0

.align n means align next
datum on 2n byte boundary.  
.align 0 turns off alignment

x, y, and z are labels of
memory locations, each of which is

initialized to 4-bytes of zero

Stephen Chong, Harvard University

Variable Access

•To compile x = x + 1  
 (i.e., the Fish AST Assign(“x”, BinOp(Var(“x”), Plus, Int 1))

 10

la $3, x ; load x's address into reg $3
lw $2, 0($3) ; load x's value into reg $2
addi $2,$2,1 ; add 1 to reg $2
sw $2, 0($3) ; store value back in x

Stephen Chong, Harvard University

First Problem: Nested Expressions

•Consider  
Binop(Binop(“x”,Plus,”y”),Plus,Binop(“w”,Plus,”z”))
•i.e., (x + y) + (w + z)

•Target language doesn’t have nested expressions,
just 3-operand assembly instructions!
•add rd, rs, st

•How do we compile nested expressions?

 11

Stephen Chong, Harvard University

A Simple Strategy

•Given Binop(A, Plus, B)
•Translate sub-expression A so that the result is stored in

a register (e.g., $3)

•Translate subexpression B so that the result is stored in
a different register (e.g., $2)

•Generate add $2, $3, $2

•Any problems?
•What if we have a deeply nested expression, with

more subexpressions than we have registers?
 12

Stephen Chong, Harvard University

A Slightly Less Simple Strategy

•Key idea: always put result in $2, and save result to
memory

•Given Binop(A, Plus, B)
•Translate sub-expression A so that the result is stored in $2

•Save $2 to memory
•Translate subexpression B so that the result is stored in $2
•Restore A’s result to, say, $3

•Generate add $2, $3, $2

 13

Stephen Chong, Harvard University

Example

• Binop(Binop(“x”,Plus,”y”),Plus,Binop(“w”,Plus,”z”))

•1. Compute x+y, putting result in $2
•2. Store $2 into temporary t1
•3. Compute w+z, putting result in $2
•4. Load temporary t1 into register, say $3
•5. add $2, $3, $2

 14

Stephen Chong, Harvard University

Expression Compilation

 15

let rec exp2mips(e:exp):inst list =
 match e with
 | Int j -> [Li(R2, Word32.fromInt j)]
 | Var x -> [La(R2,x), Lw(R2,R2,zero)]
 | Binop(e1,b,e2) ->
 (let t = new_temp() in
 (exp2mips e1) @ [La(R3,t), Sw(R2,R3,zero)]  
 @(exp2mips e2) @ [La(R3,t), Lw(R3,R3,zero)]  
 @(match b with

 Plus -> [Add(R2,R2,Reg R3)]
 | ... -> ...))
 | Assign(x,e) -> [exp2mips e] @
 [La(R3,x), Sw(R2,R3,zero)]

Stephen Chong, Harvard University

Statement Compilation

 16

 let rec stmt2mips(s:stmt):inst list =
 match s with
 | Exp e ->
 exp2mips e
 | Seq(s1,s2) ->  
 (stmt2mips s1) @ (stmt2mips s2)
 | ...

Stephen Chong, Harvard University

Statement Compilation

 17

 | If(e,s1,s2) ->
 (let else_l = new_label() in  
 let end_l = new_label() in
 (exp2mips e) @ [Beq(R2,R0,else_l)] @
 (stmt2mips s1) @ [J end_l,Label else_l] @
 (stmt2mips s2) @ [Label end_l])

E
beq $2, $0, ELSE
S1
j END
S2
...

ELSE:
END:

Stephen Chong, Harvard University

Statement Compilation

 18

 | While(e,s) ->
 (let test_l = new_label() in
 let top_l = new_label() in
 [J test_l, Label top_l] @  
 (stmt2mips s) @
 [Label test_l] @
 (exp2mips e) @
 [Bne(R2,R0,top_l)])

j TEST
S
E
bne $2, $0, TOP

TOP:
TEST:

Stephen Chong, Harvard University

Statement Compilation

 19

 | For(e1,e2,e3,s) ->
 stmt2mips(Seq(Exp e1,While(e2,Seq(s,Exp e3))))

for (e1; e2; e3) { S }

is equivalent to

e1; while (e2) { S; e3; }

Stephen Chong, Harvard University

Inefficiencies

•We’ve got a translation from Fish to MIPS assembly!
•But the translation has lots of inefficiencies...

•No constant folding
• e.g., Plus(Int 35, Int 7) could be translated to Int 42

•Inefficient use of expressions in control flow
• e.g., if (x == y) S1 else S2 is translated by evaluating x == y
and then doing a beq comparing it to 0. Could directly do a beq on x
and y

• e.g., if (E1 && E2) S1 else S2 could lazily evaluate E1 && E2:
if E1 is 0, jump directly to S2 instead of computing E2

•Lots of la/lw and la/sw to handle variables and temporaries
•Always write subexpression’s result to temporary, even if could

keep it in a register
 20

Stephen Chong, Harvard University

Constant Folding: Take 1

•What’s wrong with this?

•What about 7 + (42 - 42) ?
•How could we fix it?

 21

let rec exp2mips’(e:exp) : inst list =
 match e with
 Int w -> [Li(R2, Word32.fromInt w)]
 | Binop(e1,Plus,Int 0) -> exp2mips’ e1
 | Binop(Int i1,Plus,Int i2) ->
 exp2mips' (Int (i1+i2))
 | Binop(Int i1,Minus,Int i2) ->
 exp2mips' (Int (i1-i2))
 | Binop(e1,b,e2) -> ...

Stephen Chong, Harvard University

Conditional Contexts

•Consider if (x < y) then S1 else S2
•Translates to  
 [put x in $3, and y in $2]  
 slt $2, $3, $2  
 beq $2, $0, ELSE  
 [instructions for S1]  
 j END  
 ELSE:  
 [instructions for S2]  
 END:

•In most contexts for an expression, we want a value
•But for conditionals, we use the comparison to jump to a label and

don’t otherwise use it
•May be able to avoid materializing value

 22

Stephen Chong, Harvard University

Translate Expressions in
Conditionals Specially

 23

let rec bexp2mips(e:exp) (t:label) (f:label) =
 match e with
 Int 0 -> [J f]
 | Int _ -> [J t]
 | Binop(e1,Eq,e2) -> let tmp = new_temp() in
 (exp2mips e1) @
 [La(R3,tmp), Sw(R2,R3,R0)] @
 (exp2mips e2) @
 [La(R3,tmp), Lw(R3,R3,R0),
 Bne(R3,R2,f), J t]
 | ...

Stephen Chong, Harvard University

Global Variables

•We treated all variables (including temporary
variables) as if they were global
•Set aside space in data segment, with label
•To read: load address of label, then load value stored at

address
•To write: load address of label, then store value to that

address

•Inefficient!
•E.g., x+x requires loading x’s address twice!
•Lots of memory operations

•How could we do better?
 24

Stephen Chong, Harvard University

Register Allocation

•One option: use registers to hold variable’s value
•No need to access memory in order to use variable!

•But, what if more variables than registers?
•Won’t be able to avoid some memory accesses for

variables

•But can we at least avoid loading addresses?

•(More later in course on register allocation!)
 25

Stephen Chong, Harvard University

Frames

•Key idea:
•Set aside one block of

memory for all variables
•Each variable corresponds

to an offset within block
•Set register $29 (aka $sp,

for stack pointer) to start of
block

•Access variable v at address
$sp + [offset for x]

 26

Memory

x

y

z

t1

t2

[x↦0, y↦4, z↦8, t1↦12, t2↦16]

$sp ⟶

Higher  
addresses

Lower  
addresses

Stephen Chong, Harvard University

Before and After

•Translating z = x + 1

 27

la $3,x
lw $2,0($3)
addi $2,$2,1
la $3,z
sw $2,0($3)

Before After

lw $2,0($sp)
addi $2,$2,1
sw $2,8($sp)

Stephen Chong, Harvard University

Lowering

•Get rid of nested expressions before translating
•Introduce new variables to hold intermediate results
•Perhaps do things like constant folding

•For example, a = (x + y) + (z + w) might
be translated to

 28

t0 := x + y;
t1 := z + w;
a := t0 + t1;

Stephen Chong, Harvard University

12 instructions (9 memory)

 29

t0 := x + y;

t1 := z + w;

a := t0 + t1;

lw $v0, <xoff>($sp)
lw $v1, <yoff>($sp)
add $v0, $v0, $v1
sw $v0, <t0off>($sp)
lw $v0, <zoff>($sp)
lw $v1, <woff>($sp)
add $v0, $v0, $v1
sw $v0, <t1off>($sp)
lw $v0, <t0off>($sp)
lw $v1, <t1off>($sp)
add $v0, $v0, $v1
sw $v0, <aoff>($sp)

Stephen Chong, Harvard University

Still inefficient

•Doing lots of loads and stores
•We should not need to load/store from temps!

•(Or from variables, but we’ll deal with those later)

•Another idea: Use registers instead of temp
variables to hold intermediate values

•But of course we have only finite registers, and
expressions could be deeply nested

•So use just, say, k registers to hold first k temps

 30

Stephen Chong, Harvard University

Example

 31

t0 := x;
t1 := y;
t2 := t0 + t1;
t3 := z;
t4 := w;
t5 := t3 + t4;
t6 := t2 + t5;
a := t6;

load variable
load variable
add
load variable
load variable
add
add
store result

Stephen Chong, Harvard University

Example

 32

t0 := x;
t1 := y;
t2 := t0 + t1;
t3 := z;
t4 := w;
t5 := t3 + t4;
t6 := t2 + t5;
a := t6;

lw $t0,<xoff>($sp)
lw $t1,<yoff>($sp)
add $t2,$t0,$t1
lw $t3,<zoff>($sp)
lw $t4,<woff>($sp)
add $t5,$t3,$t4
add $t6,$t2,$t5
sw $t6,<aoff>($sp)

•Note that each little statement can be directly
translated to MIPS instructions

•8 instructions, 5 of them memory!

Stephen Chong, Harvard University

Re-using Temps

•We could reuse temps that are no longer in use!

 33

t0 := x;
t1 := y;
t2 := t0 + t1;
t3 := z;
t4 := w;
t5 := t3 + t4;
t6 := t2 + t5;
a := t6;

t0 in use
t0,t1 in use
t2 in use t0,t1 freed
t2,t3 in use
t2,t3,t4 in use
t2,t5 in use t3,t4 freed
t6 in use t2,t5 freed
t6 freed

Stephen Chong, Harvard University

Re-using Temps

•Variables in use behave like a stack...
•Why?

 34

t0 := x;
t1 := y;
t0 := t0 + t1;
t1 := z;
t2 := w;
t1 := t1 + t2;
t0 := t0 + t1;
a := t0;

t0 in use
t0,t1 in use
t0 in use t1 freed
t0,t1 in use
t0,t1,t2 in use
t0,t1 in use t2 freed
t0 in use t1 freed
t0 freed

Stephen Chong, Harvard University

More Re-use of Temps

•Consider a=(x+y)*x

•How could you avoid the redundant memory
load?

 35

t0 := x;
t1 := y;
t0 := t0 + t1;
t1 := x;
t0 := t0 * t1;
a := t0;

Requires a
memory load

Requires another
memory load for
same value!

Stephen Chong, Harvard University

More Re-use of Temps

•Consider a=(x+y)*x

 36

t0 := x;
t1 := y;
t1 := t0 + t1;

t0 := t1 * t0;
a := t0;

No need to reload
x, it is still in t0

Stephen Chong, Harvard University

Register Allocation

•We will study register allocation in more detail
later in course

•But key ideas for now:
•For each temp, calculate live range
•Variable t is live at a program point if, on control flow path,
there is subsequent read of t without an intervening write
• (In functional code, variables are never re-defined, making
it simpler)

•Calculate which variables are live at the same time
• These variables can’t be allocated to same register

 37

Stephen Chong, Harvard University

Register Allocation ctd

•Key ideas, ctd:
•...
•Draw interference graph: nodes are variables, edge

between variables if they are live at same time
•Color graph: each color is a register; nodes that are live

at same time can’t have same color/register
•Graph coloring is register allocation!

•What if more variables than registers? i.e., graph
coloring not possible?
•There’s the rub...

 38

