John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 7:
Simple Code Generation

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153



https://www.seas.harvard.edu/courses/cs153

Announcements

e New TF! Nicholas Hasselmo

* CS Nights: Mondays 8pm-10pm in MD 119.
Pizza provided!

*Project 2 out
e Due Thursday Oct 4 (9 days remaining)

*Project 3 released today
e Due Tuesday Oct 9 (14 days)

*Project 4 will be released Tuesday Oct 2



Tod

e Code generation: mapping F-ish code to MIPS
code
eVariables
* Nested expressions
o Statements
*Improving things:
» Simple constant folding
» Expressions for conditional branches

» Register allocation for binary expressions

Stephen Chong, Harvard University 3



Preliminaries

e Fortran programming language

e Name from Formula Translation
e Originally developed by IBM in 1950s for scientific and
engineering applications
*One of first high-level programming languages
*i.e., a replacement for hand-coding assembly
e|nfluenced C programming language
eEarly version had no functions or procedures

 Current versions still popular for high-performance computing
e Our source language is Fish (Fortran-ish)

e No functions/procedures, imperative, structured control flow

e Our target language is MIPS assembly



* Expressions

type exp =

Var of var

Int of int

Binop of exp * binop * exp
Not of exp

Or of exp * exp

And of exp * exp

Assign of var * exp

Stephen Chong, Harvard University 5



e Statements

type stmt =

Seqg of stmt * stmt

If of exp * stmt * stmt

While of exp * stmt

For of exp * exp * exp * stmt
Exp of exp

Return of exp

Stephen Chong, Harvard University



type label = string

type reg =
RO | R1 | R2 | .. | R31

type operand =

Reg of reg
| Immed of word

Stephen Chong, Harvard University 7



MIPS

type 1nst =

Stephen Chong, Harvard Univers

ity

Add of reg * reg * operand
L1 of reg * word

Slt of reg * reqg * operand
Beq of reg * reg * label
Bgez of reg * label

J of label

La of reg * label

Lw of reg * reg * word

Sw of reg * reg * word

Label of label |



Variables

eFish has only global variables
e|nitial approach: put each variable in the data segment

e Part of object file that contains program’s initialized data

e Data segment is loaded into memory when object file loads
e .data directive instructs assembler to put data in data

segment
'E.g. .data g .align n means align next A
/ : datum on 27 byte boundar
.align 0 _ Y ndary.
<: .word 0 . .align O turns off alignment )
y: .word 0 g x, vy, and z are labels of A
z: .word 0 memory locations, each of which is
initialized to 4-bytes of zero

= J




Variable

°Tocompilex = x + 1

(i.e., the Fish AST Assign(“x"”, BinOp(Var(“x"), Plus, Int 1))

la $3, X

lw $2, 0($3)
addi $2,$2,1
sw $2, 0(S3)

load x's address into reg $3
load x's value into reg $2
add 1 to reg $2

store value back 1in x

we e e w0

Stephen Chong, Harvard University 10



First Problem: Nested Expressions

e Consider

Binop(Binop(“x"”,Plus,”y"”),Plus,Binop(“w”,Plus,”z"))

°le, (X +y) + (w + 2)

e Target language doesn’t have nested expressions,
just 3-operand assembly instructions!

eadd rd, rs, st

e How do we compile nested expressions?



A Simple Strategy

*Glven Binop (A, Plus, B)

 Translate sub-expression A so that the result is stored in
a register (e.g., $3)

* Translate subexpression B so that the result is stored in
a different register (e.g., $2)

e GLenerate add $2, S$3, $2

* Any problems?

*\What if we have a deeply nested expression, with
more subexpressions than we have registers?



A Slightly Less Simple Strategy

*Key idea: always put result in $2, and save result to
memory

eGliven Binop (A4, Plus, B)
* Translate sub-expression A so that the result is stored in $2
*Save $2 to memory

* Translate subexpression B so that the result is stored in $2
e Restore A’s result to, say, $3

e Generate add $2, S$3, $2



Examp

® BinOp(BinOp( qul ,Plus , "Y" ) ,Plus ,Binop( uw" ,PlU.S , "Z" ) )

1. Compute x+y, putting result in $2

°2. Store $2 Into temporary t1

3. Compute w+z, putting result in $2

*4. Load temporary t1 into register, say $3
°5.add $2, $3, $2

Stephen Chong, Harvard University

14



Expression Compilation

let rec exp2mips(e:exp):inst list =
match e with
Int J -> [Li(R2, Word32.fromInt 7j)]
Var x -> [La(R2,x), Lw(R2,R2,zero)]
Binop(el,b,e2) ->
(let t = new temp() in
(exp2mips el) @ [La(R3,t), Sw(R2,R3,zero)]
@(exp2mips e2) @ [La(R3,t), Lw(R3,R3,zero)]
@(match b with
Plus -> [Add(R2,R2,Reg R3)]
| eee => L00))
| Assign(x,e) -> [exp2mips e] @
[La(R3,x), Sw(R2,R3,zero)]




Statement

let rec stmt2mips(s:stmt):inst list =
match s with
| Exp e ->
exp2mips e
| Seq(sl,s2) ->
(stmt2mips sl) @ (stmt2mips s2)

Stephen Chong, Harvard University 16



Statement Compilation

| If(e,sl,s2) ->
(let else 1 = new label() in
let end 1 = new label() 1in
(exp2mips e) @ [Beq(R2,R0,else 1)] @
(stmt2mips sl) @ [J end 1,Label else 1] @
(stmt2mips s2) @ [Label end 1])

E

beg $2, $0, ELSE
S1

. END

ELSE: |SZ2

END: |« « &




Statement Compilation

| While(e,s) ->

(let test 1 = new label() in

let top 1 = new label() 1in
[J test 1, Label top 1] @
(stmt2mips s) @
[Label test 1] @
(exp2mips e) @
[Bhe(R2,R0,top 1)1])

TEST

nn .

TOP:
TEST :

.jj

el

bne $2, S0, TOP




Statement C

| For(el,e2,e3,s) ->
stmt2mips(Seq(Exp el,While(e2,Seq(s,Exp e3))))

for (el; e2; e3) { S }
s equivalent to

el; while (e2) { S; e3; }

Stephen Chong, Harvard University 19



Inefficiencies

*\We've got a translation from Fish to MIPS assembly!
e But the translation has lots of inefficiencies...

* No constant folding
*e.g., Plus(Int 35, Int 7) could be translated to Int 42

e |nefficient use of expressions in control flow

‘e.g., if (x == y) S1 else S2istranslated by evaluatingx ==y
and then doing a beq comparing it to 0. Could directly do a beq on x
and y

*e.g., if (E1 && E2) S1 else S2couldlazily evaluate E1 && E2:
if E1is O, jump directly to S2 instead of computing E2

| ots of 1a/1lw and la/sw to handle variables and temporaries

* Always write subexpression’s result to temporary, even if could
keep it in a register



Constant Folding: Take 1

let rec exp2mips’(e:exp) : 1nst list =

match e with

Int w -=> [Li1i(R2, Word32.fromInt w) ]

Binop(el,Plus,Int 0) -> exp2mips’ el

Binop(Int 11,Plus,Int 12) ->
exp2mips’' (Int (11+12))

| Binop(Int il,Minus,Int i2) ->

exp2mips’' (Int (11-12))
| Binop(el,b,e2) ->

e \What's wrong with this?

eWhat about 7 + (42 - 42) ¢
e How could we fix it?




Conditional Contexts

eConsider if (x < y) then S1 else S2

e Translates to

[put X 1n $3, and y 1n $2]
slt $2, S3, $2
beq $2, $0, ELSE
[instructions for S1]
j END

ELSE:
[instructions for S2]

END:

e|n most contexts for an expression, we want a value

e But for conditionals, we use the comparison to jump to a label and
don’t otherwise use it

* May be able to avoid materializing value



Translate Expressions in
Conditionals Specially

let rec bexp2mips(e:exp) (t:label) (f:label) =
match e with
Int 0 -=> [J f)
Int -> [J t]
Binop(el,Eq,e2) -> let tmp = new temp() in
(exp2mips el) @
[La(R3,tmp), Sw(R2,R3,R0)] @
(exp2mips e2) @
[La(R3,tmp), Lw(R3,R3,R0),
Bne(R3,R2,f), J t]




Global Variables

*We treated all variables (including temporary

variables) as if they were global

*Set aside space in data segment, with la

el

*To read: load address of label, then loac
address

value stored at

e To write: load address of label, then store value to that

address

¢ |nefficient!

e ots of memory operations

e How could we do better?

°E.g., x+x requires loading x’s address twice!



Register Allocation

* One option: use registers to hold variable’s value

*No need to access memory in order to use variable!

e But, what if more variables than registers?

*\Won't be able to avoid some memory accesses for
variables

e But can we at least avoid loading addresses?

* (More later in course on register allocation!)



Frames

Memory
O . . Higher
Key Idea° addresses
*Set aside one block of
memory for all variables t2
eEFach variable corresponds £
to an offset within block z
*Set register $29 (aka $sp, ! |
for stack pointer) to start of gsp — * e
block addresses

* Access variable v at address
Ssp + [offset for x (x>0, yiod, 208, £112, £216]




Before a

*Translatingz = x + 1

Before After
la S3,X
lw  $2,0(S$3) lw  $2,0($sp)
addi $2,$2,1 addi $2,52,1
la $3, 2z sw $2,8($sp)

SW $2,0(S$3)

Stephen Chong, Harvard University 27



Lowering

* Get rid of nested expressions before translating

e Introduce new variables to hold intermediate results

* Perhaps do things like constant folding

°Forexample,a = (x + y) + (z + w) might
be translated to

t0 := x + vy;

tl := z + w;
a := t0 + t1l;



12 instructions (9 memory)

t0 := x + y; lw Sv0, <xoff>(Ssp)
lw $v1l, <yoff>(S$sp)

add $Sv0, $vO0, S$vl
sw Sv0, <tOoff>(S$Ssp)
tl := z + w; lw $v0, <zoff>(S$sp)
lw Sv1l, <woff>(S$Ssp)

add S$vO0, $v0, Svl
sw Sv0, <tloff>(Ssp)
a := t0 + t1; lw Sv0, <tOoff>(S$sp)
lw Svl, <tloff>(Ssp)

add $Sv0, $v0, S$vl
sw Sv0, <aoff>(Ssp)



Still inefficient

* Doing lots of loads and stores

*\We should not need to load/store from temps!
o (Or from variables, but we’ll deal with those later)

* Another idea: Use registers instead of temp
variables to hold intermediate values

e But of course we have only finite registers, and
expressions could be deeply nested

*So use just, say, k registers to hold first k temps



Examp

t0 := x: # load variable
tl := vy; # load variable
t2 := t0 + tl; # add
t3 = z: # load variable
td := w; # load variable
t5 := t3 + t4;: # add
t6 := t2 + t5; # add
a = t6; # store result

Stephen Chong, Harvard University 31



t0
tl
t2
t3
td
t5
to
a

X7
Y7
t0 + tl;
Zy
Wy
t3 + t4;
t2 + t5;
t6;

Example

1w
1w
add
1w
1w
add
add

SW

St0,<xoff>(S$sp)
Stl,<yoff>($sp)
st2,St0,St1
St3,<zoff>($sp)
Std,<woff>(S$sp)
St5,$t3,5t4
St6,$t2,St5
St6,<aoff>($sp)

* Note that each little statement can be directly
translated to MIPS instructions

8 instructions, 5 of them memory!



t0
tl
t2
t3
td
t5
to
a

Re-using Temps

X7

Y7

t0 + tl;
Zy

Wy

t3 + t4;
t2 + t5;
t6;

o H H R H H K

t0 1n use

t0,tl 1in use

t2 1n use t0,tl
t2,t3 1n use
t2,t3,t4 1n use

t2,t5 1n use t3,t4
t6 1n use t2,t5
t6

freed

freed
freed
freed

*We could reuse temps that are no longer in use!



t0
tl
t0
tl
t2
tl
t0
a

Re-using Temps

X7

Y7

t0 + tl;
Zy

W

tl + t2;
t0 + tl;
t0;

o H H R H H K

t0 1n use

t0,tl 1in use

t0 in use tl
t0,tl 1n use
t0,tl,t2 1n use

t0,tl in use t2
t0 in use tl
t0

e \Variables in use behave like a stack...

*\Why?

freed

freed
freed
freed



More Re-use of Temps

e Consider a=(x+y) *x

t0
tl
t0
tl
t0
a

V3 memory load

t0 + t1;

X; g Requires another
t0 * tl; memory load for
t0; same value!

* How could you avoid the redundant memory

load?



More Re-us

°Consider a=(x+y) *x

tO0
tl
tl

t0
a

Stephen Chong, Harvard University

X7

Y
t0 + tl;

S N O need to reload

tl * t0;
t0:;

x, itis still in £0

36



Register Allocation

*\We will study register allocation in more detalil
later in course

e But key ideas for now:

*For each temp, calculate live range

» Variable t is live at a program point if, on control flow path,
there is subsequent read of t without an intervening write

* (In functional code, variables are never re-defined, making
it simpler)

e Calculate which variables are live at the same time

» These variables can’t be allocated to same register



Register Allocation ctd

eKey ideas, ctd:

e Draw Interference graph: nodes are variables, edge
between variables if they are live at same time

e Color graph: each color is a register; nodes that are live
at same time can’t have same color/register

* Graph coloring is register allocation!

*\What if more variables than registers? i.e., graph
coloring not possible?

e There’s the rub...



