John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 8:
Compiling Calls

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Announc

*Project 2 out
* Due Thu Oct 4 (7 days)

*Project 3 out
* Due Tuesday Oct 9 (12 days)

e Reminder: CS Nights Mondays 8pm-10pm, in
MD119. Pizza provided!

Stephen Chong, Harvard University 2

* Function calls
*Calling convention
e How to implement functions

Stephen Chong, Harvard University 3

Extending Fish

e | et’s extend Fish with functions and local variables

type exXxp = ...
| cCall of var * (exp list)

type stmt = ... | Let of var*exp*stmt

{ name : var, args : var list,
body : stmt }

type func

func list

type prog

* One distinguished function (main) will be the
entry point for the program

Call and Return

e Each procedure is just a Fish program beginning with
a label (the function name)

* MIPS calling convention:

*To compile a call £(a,b,c,d)
* Move results of expressions a,b,c,d into registers $4—$7
*jal f: moves return address into $31

» The return address is address to continue execution after £ has finished
executing

» i.e., instruction immediately after the jal: $pc + 4

°Jo return(e)
* Move result of e to $2
*jr $31 (i.e., jump to the return address)

What Could Go Wrong?

e\What if foo calls bar and bar calls baz?

ebar needs to save its return address

*$31 is a caller-save register

e\Where do we save it?

*One option: each procedure has a (global) variable to hold the

return address

*kE.g., foo _return, bar return, baz return

e But what about recursive ca
bar calls foo, and foo cal

Is¢ E.g., foo calls bar, and
S bar, ...

eEach invocation of a function needs its own return address!

eEach invocation of function also needs its own local variables,

arguments, etc.

Stacks

Memory
e Key idea: associate a frame Higher
: : : Frame for 1st | addresses
with each invocation of a invocation of
procedure Foo
Frame for 1st
® Iﬂ the frame, StOre data invocation of
belonging to the invocation bar
* Return address
* Arguments to Invocation
- Local variables Lover

o addresses

Frame Allocation

e Frames are allocated
last-in-first-out
°j.e., as a stack

e For historic reasons, the stack of
frames grows downwards

* Why?
*\We use $29 (aka $sp) as the
stack pointer
e Points to the top of the stack
e Use register $30 (aka $£fp) as
the frame pointer

e Points to start of current frame
(the first word in current frame)

Sfp —

$SSp

Memory

Frame for 1st
invocation of
foo

Frame for 1st
invocation of
bar

A 4

Frame for 2nd
invocation of
foo

Frame for 2nd
invocation of
bar

Higher
addresses

v
Lower

addresses

Frame Allocation

e To allocate a frame with
n bytes:

e Subtract n from $sp

°Set Sfpto Ssp+n-4

*i.e., $£p points to first
word in this frame

e To deallocate a frame

*Restore $fp to previous
value

e Add n to $sp

Sfp —

Memory

Frame for 1st
invocation of
foo

Frame for 1st
invocation of
bar

Frame for 2nd
invocation of
foo

Frame for 2nd
invocation of
bar

Higher
addresses

v
Lower

addresses

Calling Convention in More Detail

*To call £ with arguments al, ..., an:
1. Save caller-save registers

* These are registers that the callee £ is free to clobber, so if the caller wants to
preserve their values, caller must save them

*Registers $8—$15, $24, $25 (aka $t0-$t9) are the general-purpose caller-
save registers

2. Move arguments

e Push extra arguments onto stack in reverse order

*Place 1st four arguments in $4-$7 (aka $a0-$a3)
*Set aside space on stack for 1st 4 arguments

°3. Execute jal f£: return address is placed in $31 (aka $ra)
* [code for function £ executes, and returns to return address]
4. Pop arguments off stack; restore caller-save registers

What does th

* Function prologue
e At beginning of called function

* During execution

* Function epilogue
e At end of called function

Stephen Chong, Harvard University 11

°1.

Function Prologue

Allocate frame: subtract frame size n from $sp

*n big enough for local vars, callee-save registers, etc.

°).

Save any callee-save registers

*Registers the caller expects to be preserved

°3.

ncludes $fp, $Sra, and $s0-$s7 ($16-$23).

Don't need to save a register you don't clobber...

* E.g., only need to save $ra if function makes a call

Set SfptoSsp+n-4

During Execution

* Access variables relative to stack pointer (or
frame pointer)

* must keep track of each var's offset

e Temporary values can be pushed on stack and

then popped off.
*Push(r): subu sp,Ssp,4; sw r, 0(Ssp)

°Pop(r): 1w r,0($sp); addu S$sp,S$sp,4

*e.g., when compiling el+e2, we can evaluate el,

push result on stack, evaluate e2, pop el's value and
then add the results.

Function Epi

1. Place result in Sv0 ($2).

). Restore callee-saved registers
eIncludes caller's frame pointer and the return address

* 3. Deallocate frame: add frame size n to $sp
*4. Return to caller

°*jr Sra

Stephen Chong, Harvard University 14

Example (fro

int fact(int n) {
1f (n < 1) return 1;
else return n * fact(n-1);

}

int main() {
return fact(10)+42;

}

Stephen Chong, Harvard University 15

Function prologue

S$Ssp,$sp,32

Main

main: subu # allocate frame
SW Sra,20($Ssp) # save caller return address
SW Sfp,16(Ssp) # save caller frame pointer
addiu Sfp,Ssp, 28 # set up new frame pointer
1i sa0,10 # set up argument (10)
jal fact # call fact
addi SvO0,v0,42 # add 42 to result
lw Sra,20(Ssp) # restore return address
1w Sfp,16(Ssp) # restore frame pointer
addiu S$sp, $sp, 32 # pop frame
] Sra # return to caller

N~ Function epilogue

Main

Function prologue

main: subu $sp,Ssp,32 # allocate frame
SW Sra,20($Ssp) # save caller return address
SW Sfp,16(Ssp) # save caller frame pointer
addiu $fp, $sp, 28 §) '
11 $a£(;, 10p // Notes: \V
jal fact * Ssp is kept double-word aligned
addi $vO0,v0,42| ® MIPS calling convention is B
1w Sra,20($sy minimum frame size is 24 bytes

1w Sfp,16($sy ($Sa0-$a3, $Sra, padded to double-
addiu $sp,$sp,37 word boundary)
Jr Sra * main also needs to store $fp,

; padded to double-word boundary

Function &So frame size for main is 32 bytey

Fact

Function prologue

fact: subu Ssp,Ssp,32 # allocate frame
SW Sra,20(Ssp) # save caller return address
SW Sfp,16(Ssp) # save caller frame pointer
addiu S$fp,Ssp,28 # set up new frame pointer
bgtz $a0,L2 # if n > 0 goto L2
1i Svo0,1 # set return value to 1
j L1l # goto epilogue

L2: SW Sa0,0(Sfp) # save n
addi S$Sa0,$a0,-1 # subtract 1 from n
jal fact # call fact(n-1)
1w Svl,0(Sfp) # load n
mul Sv0,Sv0,Svl # calculate n*fact(n-1)

Ll: 1w Sra,20(Ssp) # restore ra
1w Sfp,16(Ssp) # restore frame pointer
addiu Ssp,Ssp,32 # pop frame from stack
jr Sra # return Function eptlogue

Sfp —

Ssp —

0x100

O0xOFC

saved argument 10

0x0F8

O0x0F4

main’s return address

0xO0OFO

main’s frame pointer

O0xXO0EC

O0xXO0ES8

0x0E4

0x0EOQ

0x0DC

0x0D8

0x0D4

0x0DO

0x0CC

0x0C8

0x0C4

0x0CO

0x0BC

0x0BS8

0x0B4

Frame for
fact(10)

Sfp —

Ssp —

0x100

O0xOFC

saved argument 10

0x0F8

O0x0F4

main’s return address

0xO0OFO

main’s frame pointer

O0xXO0EC

O0xXO0ES8

0x0E4

0x0EOQ

0x0DC

saved argument 9

0x0D8

0x0D4

fact(10)’s return address

0x0DO

fact(10)’s frame pointer

0x0CC

0x0C8

0x0C4

0x0CO

0x0BC

0x0BS8

0x0B4

Frame for
fact(10)

Frame for
fact(9)

Sfp —

Ssp —

0x100

O0xOFC

saved argument 10

0x0F8

O0x0F4

main’s return address

0xO0OFO

main’s frame pointer

O0xXO0EC

O0xXO0ES8

0x0E4

0x0EOQ

0x0DC

saved argument 9

0x0D8

0x0D4

fact(10)’s return address

0x0DO

fact(10)’s frame pointer

0x0CC

0x0C8

0x0C4

0x0CO

0x0BC

0x0BS8

0x0B4

Frame for
fact(10)

Frame for
fact(9)

WTFrame Pointer?

* Frame pointers aren't necessary!

* Can calculate variable offsets relative to $sp

e Works unless values of unknown size are allocated on the stack (e.g., via
alloca)

e Simplifies variadic functions

* i.e., variable number of arguments, such as printf
e Debuggers like having saved frame pointers around (can crawl| up the stack).
e There are 2 conventions for the MIPS:
e GCC: uses frame pointer

*SGI: doesn't use frame pointer

e No frame pointer means fewer instructions for calls, but complicates
code generation (due to pushes, variadic functions, etc.)

Compiling Functions

* Now we understand calling convention, how do we generator
code for functions?
* Must generate prologue & epilogue
* Need to know how much space frame occupies

*Roughly c + 4*v where c is the constant overhead to save callee-save
registers and v is number of local variables (including parameters)

* When translating the body, must know offset of each variable

e During compilation keep an environment that maps variables to offsets.
* Access variables relative to the frame pointer.

*\When we encounter a return, move the result to $v0 and jump
to epilogue
* Also keep epilogue's label in environment

Enviro

type varmap

val empty varmap : unit -> varmap

val insert var : varmap -> var -> 1int -> varmap
val lookup var : varmap -> var -> 1int

type env = {epilogue : label,
varmap : varmap}

Stephen Chong, Harvard University 24

What about temps?

e Three different options

For Project 4, implement one of these options
*Option 1
*When evaluating a compound expression el + e2

» generate code to evaluate el and place it in $v0, then push $v0 on
the stack

» generate code to evaluate e2 and place it in $v0
* pop el's value into a temporary register (e.g., $t0)
*add $t0 and $v0 and put the result in $v0
eBad news: lots of pushes and pops, so lots of overhead

e Good news: very simple! Don’t need to figure out how many
temps you need

Option 1 Example: 20 instructions
(11 memory)

a := (x+y) + (z + w)

1w
push
1w
pop
add
push
1w
push
1w
pop
add
pop
add
SW

Sv0, <xoff>(Sfp)
Sv0

Sv0, <yoff>(Sfp)
Svl

Sv0,S$vl,SvO

sv0

Sv0, <zoff>(Sfp)
Sv0

Sv0, <woff>(Sfp)
Svl

Sv0,S$vl,SvO

Svl

Sv0,Svl,$vO
Sv0,<aoff>(Sfp)

#
#
#
#
#
#
#
#
#
#
#
#
#
#

evaluate x
push x's value
evaluate y
pop X's value
add x and y's values
push value of x+y
evaluate z
push z's value
evaluate w
pop z's value
add z and w's values
pop X+Vy
add (x+y) and (z+w)'s values
store result 1in a

Option 2

eEliminate nested expressions!

* Avoids the need to push every time we have a nested
expression.

e Introduce new variables to hold intermediate results
°f.g,a := (x + y) + (z + w) mightbe translated to:

t0 :1= x + vy;
tl := z2 + w;
a := t0 + tl;

* Treat temps the same as local variables

ei.e., allocate space for temps once in the prologue and
deallocate the space once in the epilogue

Option 2 example: 20 instructions
(9 memory)

a := (x+y) + (z + w)

t0 := x + vy; lw Sv0, <xoff>(Sfp)
lw Svl, <yoff>(Sfp)
add $v0, $v0, Svl
sw Sv0, <tOoff>(Sfp)

tl := z + w; lw Sv0, <zoff>(Sfp)

lw $vl1, <woff>(Sfp)
add Sv0, Sv0, Svl
sw Sv0, <tloff>($fp)
a := t0 + tl; 1w $v0, <tOoff>(S$fp)
lw Svl, <tloff>(Sfp)
add sv0, S$vO0, svl
sw Sv0, <aoff>(Sfp)

Option 2.5

o Still doing lots of loads and stores for temps

e (and also for variables!)

*So another idea: use registers to hold
Intermediate values instead of variables

°*For now:
« Assume an infinite number of registers

* Keep a distinction between temps and variables: variables
require loading/storing, but temps do not

Option 2.5

a := (x+vy) + (z + w)

t0 := x; # load variable
tl := vy; # load variable
t2 := t0 + t1; # add

t3 = z; # load variable
td := w; # load variable
t5 := t3 + t4; # add

t6 := t2 + t5; # add

a := té6; # store result

Stephen Chong, Harvard University 30

Option 2.5 Example: 8 instructions
(b memory)

a = (x +y) + (z+ w)
t0 := x; lw $St0,<xoff>($fp)
tl := y; lw $tl,<yoff>($fp)
t2 := t0 + t1; add $t2,$t0,stl
t3 := z; lw $t3,<zoff>($fp)
td := w; lw S$t4,<woff>(S$Sfp)
t5 := t3 + t4; add $t5,$t3,st4
t6 := t2 + t5; add $t6,S$t2,S$t5
a := t6; sw $t6,<aoff>($fp)

* Note that each little statement translates directly to a
single MIPS instruction

a := (X +vy)
t0 := x;

tl := vy;

t2 := t0 + t1;
t3 := 2z;

td := w;

t5 := t3 + t4;
t6 := t2 + t5;
a := to6;

*We can reuse temps

Using le

o H O H K H®

*They form a stack discipline!

t0 taken

t0, tl1 taken

t2 taken

t2, t3 taken

t2, t3, t4 taken
t2, t5 taken

t6 taken

<none taken>

eldea: Use a compile-time stack of registers instead of a run-time

stack!

Stephen Chong, Harvard University

32

t0 := Xx;
tl := y;
t0 := t0 + t1;
tl := 2z;
t2 := w;
tl := tl1 + t2;
t0 := t0 + t1;
a := to0;

Stephen Chong, Harvard University

o H O H K H®

t0 taken

t0, tl1 taken

t0 taken

t0, tl1 taken

t0, tl1, t2 taken
t0, tl1 taken

t0 taken

<empty>

33

Option 3

*\When the compile-time stack overflows (i.e., need more
temps than we have registers):

e Generate code to “spill” (push) all of the temps.
eReset the compile-time stack to <empty>

*\When the compile-time stack underflows (i.e., we need temps
that we spilled earlier):

* Generate code to pop all of the temps.

eReset the compile-time stack to full.

*\What's really happening is that we're caching the “hot” end
of the run-time stack in registers

e Some architectures (e.g., SPARC, Itanium) can do the spilling/
restoring with 1 instruction.

e Compared to previous options

—

Option 3

eDon’t push and pop on stack when expressions are small

eEliminates lots of memory access (and amortizes the cost
of stack adjustment)

e But still far from optimal...

eConsider a+ (b+ (c+(d+..+(y+2)..))) versus
(((((a+b)+c)+d)+ .. +y)+2

eIf order of evaluation doesn't matter, then want to pick

one t
overf

nat minimizes de

OW.)

oth of stack (i.e., less likely to

