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Announc

*Project 2 out
* Due Thu Oct 4 (7 days)

*Project 3 out
* Due Tuesday Oct 9 (12 days)

e Reminder: CS Nights Mondays 8pm-10pm, in
MD119. Pizza provided!
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* Function calls
*Calling convention
e How to implement functions
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Extending Fish

e | et’s extend Fish with functions and local variables

type exXxp = ...
| cCall of var * (exp list)

type stmt = ... | Let of var*exp*stmt

{ name : var, args : var list,
body : stmt }

type func

func list

type prog

* One distinguished function (main) will be the
entry point for the program



Call and Return

e Each procedure is just a Fish program beginning with
a label (the function name)

* MIPS calling convention:

*To compile a call £(a,b,c,d)
* Move results of expressions a,b,c,d into registers $4—$7
*jal f: moves return address into $31

» The return address is address to continue execution after £ has finished
executing

» i.e., instruction immediately after the jal: $pc + 4

°Jo return(e)
* Move result of e to $2
*jr $31 (i.e., jump to the return address)



What Could Go Wrong?

e\What if foo calls bar and bar calls baz?

ebar needs to save its return address

*$31 is a caller-save register

e\Where do we save it?

*One option: each procedure has a (global) variable to hold the

return address

*kE.g., foo _return, bar return, baz return

e But what about recursive ca
bar calls foo, and foo cal

Is¢ E.g., foo calls bar, and
S bar, ...

eEach invocation of a function needs its own return address!

eEach invocation of function also needs its own local variables,

arguments, etc.



Stacks

Memory
e Key idea: associate a frame Higher
: : : Frame for 1st | addresses
with each invocation of a invocation of
procedure Foo
Frame for 1st
® Iﬂ the frame, StOre data invocation of
belonging to the invocation bar
* Return address
* Arguments to Invocation
- Local variables Lover

o addresses




Frame Allocation

e Frames are allocated
last-in-first-out
°j.e., as a stack

e For historic reasons, the stack of
frames grows downwards

* Why?
*\We use $29 (aka $sp) as the
stack pointer
e Points to the top of the stack
e Use register $30 (aka $£fp) as
the frame pointer

e Points to start of current frame
(the first word in current frame)

Sfp —

$SSp

Memory

Frame for 1st
invocation of
foo

Frame for 1st
invocation of
bar

A 4

Frame for 2nd
invocation of
foo

Frame for 2nd
invocation of
bar

Higher
addresses

v
Lower

addresses



Frame Allocation

e To allocate a frame with
n bytes:

e Subtract n from $sp

°Set Sfpto Ssp+n-4

*i.e., $£p points to first
word in this frame

e To deallocate a frame

*Restore $fp to previous
value

e Add n to $sp

Sfp —

Memory

Frame for 1st
invocation of
foo

Frame for 1st
invocation of
bar

Frame for 2nd
invocation of
foo

Frame for 2nd
invocation of
bar

Higher
addresses

v
Lower

addresses



Calling Convention in More Detail

*To call £ with arguments al, ..., an:
1. Save caller-save registers

* These are registers that the callee £ is free to clobber, so if the caller wants to
preserve their values, caller must save them

*Registers $8—$15, $24, $25 (aka $t0-$t9) are the general-purpose caller-
save registers

2. Move arguments

e Push extra arguments onto stack in reverse order

*Place 1st four arguments in $4-$7 (aka $a0-$a3)
*Set aside space on stack for 1st 4 arguments

°3. Execute jal f£: return address is placed in $31 (aka $ra)
* [code for function £ executes, and returns to return address]
4. Pop arguments off stack; restore caller-save registers



What does th

* Function prologue
e At beginning of called function

* During execution

* Function epilogue
e At end of called function
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°1.

Function Prologue

Allocate frame: subtract frame size n from $sp

*n big enough for local vars, callee-save registers, etc.

°).

Save any callee-save registers

*Registers the caller expects to be preserved

°3.

ncludes $fp, $Sra, and $s0-$s7 ($16-$23).

Don't need to save a register you don't clobber...

* E.g., only need to save $ra if function makes a call

Set SfptoSsp+n-4



During Execution

* Access variables relative to stack pointer (or
frame pointer)

* must keep track of each var's offset

e Temporary values can be pushed on stack and

then popped off.
*Push(r): subu $sp,S$sp,4; sw r, 0(Ssp)

°Pop(r): 1w r,0($sp); addu S$sp,S$sp,4

*e.g., when compiling el+e2, we can evaluate el,

push result on stack, evaluate e2, pop el's value and
then add the results.




Function Epi

1. Place result in Sv0 ($2).

). Restore callee-saved registers
eIncludes caller's frame pointer and the return address

* 3. Deallocate frame: add frame size n to $sp
*4. Return to caller

°*jr Sra
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Example (fro

int fact(int n) {
1f (n < 1) return 1;
else return n * fact(n-1);

}

int main() {
return fact(10)+42;

}
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Function prologue

S$Ssp,$sp,32

Main

main: subu # allocate frame
SW Sra,20($Ssp) # save caller return address
SW Sfp,16(Ssp) # save caller frame pointer
addiu Sfp,Ssp, 28 # set up new frame pointer
1i sa0,10 # set up argument (10)
jal fact # call fact
addi SvO0,v0,42 # add 42 to result
lw Sra,20(Ssp) # restore return address
1w Sfp,16(Ssp) # restore frame pointer
addiu S$sp, $sp, 32 # pop frame
] Sra # return to caller

N~ Function epilogue



Main

Function prologue

main: subu $sp,Ssp,32 # allocate frame
SW Sra,20($Ssp) # save caller return address
SW Sfp,16(Ssp) # save caller frame pointer
addiu $fp, $sp, 28 § ) '
11 $a£(;, 10p // Notes: \V
jal fact * Ssp is kept double-word aligned
addi $vO0,v0,42| ® MIPS calling convention is B
1w Sra,20($sy minimum frame size is 24 bytes

1w Sfp,16($sy ($Sa0-$a3, $Sra, padded to double-
addiu $sp,$sp,37 word boundary)
Jr Sra * main also needs to store $fp,

; padded to double-word boundary

Function &So frame size for main is 32 bytey




Fact

Function prologue

fact: subu Ssp,Ssp,32 # allocate frame
SW Sra,20(Ssp) # save caller return address
SW Sfp,16(Ssp) # save caller frame pointer
addiu S$fp,Ssp,28 # set up new frame pointer
bgtz $a0,L2 # if n > 0 goto L2
1i Svo0,1 # set return value to 1
j L1l # goto epilogue

L2: SW Sa0,0(Sfp) # save n
addi S$Sa0,$a0,-1 # subtract 1 from n
jal fact # call fact(n-1)
1w Svl,0(Sfp) # load n
mul Sv0,Sv0,Svl # calculate n*fact(n-1)

Ll: 1w Sra,20(Ssp) # restore ra
1w Sfp,16(Ssp) # restore frame pointer
addiu S$sp,S$sp,32 # pop frame from stack
jr Sra # return Function eptlogue
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WTFrame Pointer?

* Frame pointers aren't necessary!

* Can calculate variable offsets relative to $sp

e Works unless values of unknown size are allocated on the stack (e.g., via
alloca)

e Simplifies variadic functions

* i.e., variable number of arguments, such as printf
e Debuggers like having saved frame pointers around (can crawl| up the stack).
e There are 2 conventions for the MIPS:
e GCC: uses frame pointer

*SGI: doesn't use frame pointer

e No frame pointer means fewer instructions for calls, but complicates
code generation (due to pushes, variadic functions, etc.)



Compiling Functions

* Now we understand calling convention, how do we generator
code for functions?
* Must generate prologue & epilogue
* Need to know how much space frame occupies

*Roughly c + 4*v where c is the constant overhead to save callee-save
registers and v is number of local variables (including parameters)

* When translating the body, must know offset of each variable

e During compilation keep an environment that maps variables to offsets.
* Access variables relative to the frame pointer.

*\When we encounter a return, move the result to $v0 and jump
to epilogue
* Also keep epilogue's label in environment



Enviro

type varmap

val empty varmap : unit -> varmap

val insert var : varmap -> var -> 1int -> varmap
val lookup var : varmap -> var -> 1int

type env = {epilogue : label,
varmap : varmap}
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What about temps?

e Three different options

For Project 4, implement one of these options
*Option 1
*When evaluating a compound expression el + e2

» generate code to evaluate el and place it in $v0, then push $v0 on
the stack

» generate code to evaluate e2 and place it in $v0
* pop el's value into a temporary register (e.g., $t0)
*add $t0 and $v0 and put the result in $v0
eBad news: lots of pushes and pops, so lots of overhead

e Good news: very simple! Don’t need to figure out how many
temps you need



Option 1 Example: 20 instructions
(11 memory)

a := (x+y) + (z + w)

1w
push
1w
pop
add
push
1w
push
1w
pop
add
pop
add
SW

Sv0, <xoff>(Sfp)
Sv0

Sv0, <yoff>(Sfp)
Svl

Sv0,S$vl,SvO

sv0

Sv0, <zoff>(Sfp)
Sv0

Sv0, <woff>(Sfp)
Svl

Sv0,S$vl,SvO

Svl

Sv0,Svl,$vO
Sv0,<aoff>(Sfp)

#
#
#
#
#
#
#
#
#
#
#
#
#
#

evaluate x
push x's value
evaluate y
pop X's value
add x and y's values
push value of x+y
evaluate z
push z's value
evaluate w
pop z's value
add z and w's values
pop X+Vy
add (x+y) and (z+w)'s values
store result 1in a



Option 2

eEliminate nested expressions!

* Avoids the need to push every time we have a nested
expression.

e Introduce new variables to hold intermediate results
°f.g,a := (x + y) + (z + w) mightbe translated to:

t0 :1= x + vy;
tl := z2 + w;
a := t0 + tl;

* Treat temps the same as local variables

ei.e., allocate space for temps once in the prologue and
deallocate the space once in the epilogue



Option 2 example: 20 instructions
(9 memory)

a := (x+y) + (z + w)

t0 := x + vy; lw Sv0, <xoff>(Sfp)
lw Svl, <yoff>(Sfp)
add $v0, $v0, Svl
sw Sv0, <tOoff>(Sfp)

tl := z + w; lw Sv0, <zoff>(Sfp)

lw $vl1, <woff>(Sfp)
add Sv0, Sv0, Svl
sw Sv0, <tloff>($fp)
a := t0 + tl; 1w $v0, <tOoff>(S$fp)
lw Svl, <tloff>(Sfp)
add sv0, S$vO0, svl
sw Sv0, <aoff>(Sfp)



Option 2.5

o Still doing lots of loads and stores for temps

e (and also for variables!)

*So another idea: use registers to hold
Intermediate values instead of variables

°*For now:
« Assume an infinite number of registers

* Keep a distinction between temps and variables: variables
require loading/storing, but temps do not



Option 2.5

a := (x+vy) + (z + w)

t0 := x; # load variable
tl := vy; # load variable
t2 := t0 + t1; # add

t3 = z; # load variable
td := w; # load variable
t5 := t3 + t4; # add

t6 := t2 + t5; # add

a := té6; # store result
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Option 2.5 Example: 8 instructions
(b memory)

a = (x +y) + (z+ w)
t0 := x; lw $St0,<xoff>($fp)
tl := y; lw $tl,<yoff>($fp)
t2 := t0 + t1; add $t2,$t0,stl
t3 := z; lw $t3,<zoff>($fp)
td := w; lw S$t4,<woff>(S$Sfp)
t5 := t3 + t4; add $t5,$t3,st4
t6 := t2 + t5; add $t6,S$t2,S$t5
a := t6; sw $t6,<aoff>($fp)

* Note that each little statement translates directly to a
single MIPS instruction



a := (X +vy)
t0 := x;

tl := vy;

t2 := t0 + t1;
t3 := 2z;

td := w;

t5 := t3 + t4;
t6 := t2 + t5;
a := to6;

*We can reuse temps

Using le

o H O H K H®

*They form a stack discipline!

t0 taken

t0, tl1 taken

t2 taken

t2, t3 taken

t2, t3, t4 taken
t2, t5 taken

t6 taken

<none taken>

eldea: Use a compile-time stack of registers instead of a run-time

stack!
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t0 := Xx;
tl := y;
t0 := t0 + t1;
tl := 2z;
t2 := w;
tl := tl1 + t2;
t0 := t0 + t1;
a := to0;
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o H O H K H®

t0 taken

t0, tl1 taken

t0 taken

t0, tl1 taken

t0, tl1, t2 taken
t0, tl1 taken

t0 taken

<empty>
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Option 3

*\When the compile-time stack overflows (i.e., need more
temps than we have registers):

e Generate code to “spill” (push) all of the temps.
eReset the compile-time stack to <empty>

*\When the compile-time stack underflows (i.e., we need temps
that we spilled earlier):

* Generate code to pop all of the temps.

eReset the compile-time stack to full.

*\What's really happening is that we're caching the “hot” end
of the run-time stack in registers

e Some architectures (e.g., SPARC, Itanium) can do the spilling/
restoring with 1 instruction.



e Compared to previous options

—

Option 3

eDon’t push and pop on stack when expressions are small

eEliminates lots of memory access (and amortizes the cost
of stack adjustment)

e But still far from optimal...

eConsider a+ (b+ (c+(d+..+(y+2)..) ) ) versus
(((((a+b)+c)+d)+ .. +y)+2

eIf order of evaluation doesn't matter, then want to pick

one t
overf

nat minimizes de

OW.)

oth of stack (i.e., less likely to



