HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers

Lecture 9: Data
Representation and Memory
Management

Stephen Chong (Today: Ming Kawaguchi)

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Announc

eproject 1 feedback out

*Project 2 out
e Due Thursday Oct 4 (2 days)

*Project 3 out
e Due Tuesday Oct 9 (7 days)

*Project 4 out tonight!
e Due Thursday Oct 25 (23 days)

Stephen Chong, Harvard University 2

1

e Structs and memory

e Copy-in/Copy-out vs Call-by-reference
* Arrays and strings

* Allocation on stack vs heap

e Malloc/free

Stephen Chong, Harvard University 3

Structs (~Records) in C

struct Point { int x; int y; };
struct Rect { struct Point 11,1r,ul,ur; };

struct Rect mkSquare(struct Point 11, int len) {
struct Rect res;

res.lr = res.ul = res.ur = res.ll = 11;
res.lr.x += len;

res.ur.x += len; ul ur
res.ur.y += len;

res.ul.y += len;

} I Ir

Representation of Structs

Memory
struct Point { int x; int y; }; Higher
e Two contiguous words — |

X
* Alternatively, use two registers? i

struct Rect { struct Point 11,1r,ul,ur; };

e Eight contiguous words

ur .x

ul.y

ul.x

lr.y

lr.x

ll.y

11.x

Accessing Struct Members

struct Point { int x; int y; };
struct Rect { struct Point 1l1,1r,ul,ur; };

struct Rect r = ...
int 1 = r.ul.y;

* How do we access a member of a record? E.g., r.ul.y
e Assume that $t0 holds the base address of r
e Calculate offsets of path relative to base address [

ur .x

. ul =sizeof(Point) + sizeof(Point) =8+ 8 -
ul.y

e . y=s1zeof(int) =4 al.x |4

lr.y

eSo r.ul.y can be accessed at address $t0 + 20

lr.x

lw $t2, 20($t0) — 1 |8

St0 — -

Copy-In/ Copy-Out

e How do we handle assignment of records?

struct Rect mkSquare(struct Point 11, int len) {
struct Rect res;
res.lr = 11;

}
e Copy all elements out of source, and into target

e Equivalent to doing word-level operations:
res.lr.x = 11.x;
res.lr.y = 1ll.y;

*For large structs, could use something like memcpy to
copy contiguous memory

Procedure Calls

eSimilarly, when we call a procedure we copy
arguments in and result out

o Caller sets aside additional space in frame for results
that are bigger than 2 words

e Sometimes this is called “call-by-value” or
“Dass-by-value”
*Bad terminology
e Copy-in/copy-out is better

e Problem: expensive for large records

Pass-by-Reference

e |nstead of copy-in/copy-out, caller can pass address of struct

e Called pass-by-reference

void mkSquare(struct Point *11, int len,
struct Rect *res) {

res->1lr = res->ul = res->ur = res->11 = *11;
res->lr.x += len;
res->ur.x += len;
res->ur.y += len;
res->ul.y += len;
}

void foo() {
struct Point origin = {0,0};
struct Rect unit sq;
mkSquare(&origin, 1, &unit sq);

}

origin.y

origin.x <~\‘

unit_sqg.ur.y

unit_sq.ur.x

unit_sq.ul.y

unit_sq.ul.x

unit_sq.lr.y

unit_sq.lr.x Frame for

unit_sq.ll.y foo ()

unit_sq.ll.x <

argument: ||

argument: len = 1

B

argument: res

Frame for
mkSquare(...)

Pass-by-Ret

*In some languages, up to programmer

eE.g., C, C++ argument type indicates if passing value,
pointer, reference

*|n other languages, it is a language design
decision

°F.g., Java is call-by-reference only

Stephen Chong, Harvard University 11

Puzzle: what's w

struct Rect * mkSquare(struct Point *11, int len) {
struct Rect res;
res.lr = res.ul = res.ur = res.ll = *11;
res.lr.x += len;
res.ur.x += len;
res.ur.y += len;
res.ul.y += len;

return &res;

Stephen Chong, Harvard University 12

origin.y

origin.x *

Frame for
foo()

$fp — argument: || @

argument: len = 1

res.ur.y

res.ur.Xx

Frame for

res.ul.y
mkSquare(...)

res.ul.x

res.Ir.y

res.lr.x

$31 =&res res.ll.y
$sp _\x) res.ll.x

$31

Sfp —

Ssp —

origin.y

origin.x

Frame for
foo()

Stack vs Heap Allocation

*\When should we allocate data on stack?

*Only when we know the size of the data

*Only when the data is not used after the
procedure returns!

*Previous example: pointer to res returned by
mkSquare, but res was in stack frame for mkSquare

e Failure to do this leads to bugs and security
vulnerabilities...

e Other data must be allocated in heap

°l.e., usemalloc()

Managing the Heap

e Some languages (C, C++, ...) have manual memory
management

* Programmers explicitly call malloc () to allocate memory in

heap

* Must remember to call free () to release the memory
* Forgetting to call £ree results in memory leaks

* Calling free more than once on same pointer (aka double free)
results in bugs and vulnerabilities

e Other languages (Java, OCaml, Python, JavaScript, ...)
have managed memory garbage collection
e|anguage runtime looks after allocation and garbage collection

e More on this next lecture...

Recall

struct Rect * mkSquare(struct Point *11, int len) {
struct Rect res;
res.lr = res.ul = res.ur = res.ll = *11;
res.lr.x += len;
res.ur.x += len;
res.ur.y += len;
res.ul.y += len;

return &res;

Stephen Chong, Harvard University 17

Sol

struct Rect *mkSquare(struct Point *11, 1int len) {

struct Rect *res = malloc(sizeof(struct Rect));
res->1lr = res->ul = res->ur = res->11 = *11;
(*res).lr.x += len;

res->ur.x += len;

res->ur.y += len;

(*res).ul.y += len;

return res;

Stephen Chong, Harvard University 18

Representation of Arrays and Strings

void foo() { void foo() {
char buf[27]; char but[27];
buf[0] = 'a’; *(buf) = ‘a’;
buf[l] = 'b’; *(buf+l) = "b';
buf[25] = 'z'; *(buf+25) = 'z°;
buf[26] = 0; *(buf+26) = 0;

} }

buf —»|97(98]|99(- [121]122(0

*An array in C is a contiguous region of memory

* A string is just an zero-terminated array of char

* Accessing element: buf[1] is (base of array buf) + 1 *
size of(element)

eSame issues of allocating on stack or heap...

Multi-dimensional Arrays

°In C int m[4][3] yields an array with 4 rows
and 3 columns.

_aid out in row-major order:

m[0][0], m[O][1], m[O]J[2], m[1][O], m[1][1], ..

m[0][0]

m[O][1]

m[0][2]

m[1][0]

m[1l][1]

m[1][2]

m[2][0]

m[2][1]

m[2][2]

m[3][0]

m[3][1]

m[3][2]

Multi-dimensional Arrays

°In C int m[4][3] yields an array with 4 rows

dl’

_aid out in row-major order:

d 3 columns.

m[0][0], m[O][1], m[O]J[2], m[1][O], m[1][1], ..

eSom[i][7] is located where?

m[0][0]

m[O][1]

m[0][2]

m[1][0]

m[1l][1]

m[1][2]

m[2][0]

m[2][1]

*(base address of m) + (1 * 3 * sizeof(int)) + j *
sizeof (1int)

Multi-dimensional Arrays

*|n Fortran, arrays are laid out in column major
order

m[0][0]

m[O][1]

m[0][2]

m[1][0]

m[1][1]

m[1][2]

m[2][0]

m[2][1]

m[2][2]

m[3][0]

m[3][1]

m[3][2]

°In ML, there are no multi-dimensional arrays int
array) array.

*Why is knowing this important?

Multi-dimensional Arrays

*|n Fortran, arrays are laid out in column major

order

m[0][0]

m[1][0]

m[2][0]

m[3][0]

m[O][1]

m[1][1]

m[2][1]

m[3][1]

°In ML, there are no multi-dimensional arrays int
array) array.

*Why is knowing this important?

Constant Strings

* A string constant "foo" is represented as global
data:

~string42: 102 111 111 O
e|t's usually placed in the text segment so it's read
only.
eallows all copies of the same string to be shared.
e Typical mistake:

char *p = "foo";
p[O0] = *b;

How do malloc and free work?

*(High-level view only; for more info, see CS61!)

*Uponmalloc(n):

*Find an unused space on heap of at least size n

e (Need to

e Return

*Upon free(p):

e Mark s

e (Need-

nace pointed to

o keep track of

much space to free)

mark space as in use)
address of that space

oy p as free

now big object is to know how

One Option: Free List

e Keep a linked list of contiguous chunks of free
memory

e Each component of list has two words of meta-data
* 1 word points to the next element in the free list

» The other word says how big the object is

free 1list head

next @|size next <

One Option: Free List

elomalloc(n):

*Run down list until find a block that is big enough (size > n)
e Divide block, put left overs back on free list
o First-fit vs best-fit?

[0 free(p):
e Put object back in free list
e Metadata lets us know how size of object
eKeep list sorted to allow coalescing of adjacent free blocks

free 1list head

next @|size next <

Multiple tree lists!

e Keep an array of free lists!

eEach list has chunks the same size

efree list[i] holds chunks of size 21
e Round requests up to the next power of 2

*When free 1list[i] is empty, take a block from
free list[i+1] and divide it in half, putting both
chunks in free list[i]

* Alternatively, run through free 1ist[i-1] and
merge contiguous blocks

Modern Languages

e Represent all records (tuples, objects, etc.) using

pointers.

* Makes it possible to support polymorphism.
- e.g., ML doesn't care whether we pass an integer, two-tuple, or

record to the identity functi

on: all represented with 1 word

*Price paid: lots of loads/stores...

* By default, allocate records on the heap.

* Programmer doesn't have -

0 worry about lifetimes.

e Compiler may determine t
on the stack instead.

nat it's safe to allocate a record

e Uses a garbage collector to safely reclaim data.

