
CS153: Compilers
Lecture 9: Data
Representation and Memory
Management

Stephen Chong (Today: Ming Kawaguchi)

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•project 1 feedback out
•Project 2 out

•Due Thursday Oct 4 (2 days)

•Project 3 out
•Due Tuesday Oct 9 (7 days)

•Project 4 out tonight!
•Due Thursday Oct 25 (23 days)

 2

Stephen Chong, Harvard University

Today

•Structs and memory
•Copy-in/Copy-out vs Call-by-reference
•Arrays and strings
•Allocation on stack vs heap
•Malloc/free

 3

Stephen Chong, Harvard University

Structs (~Records) in C

 4

struct Rect { struct Point ll,lr,ul,ur; };

ul

ll lr

ur

struct Point { int x; int y; };

struct Rect mkSquare(struct Point ll, int len) {
 struct Rect res;
 res.lr = res.ul = res.ur = res.ll = ll;
 res.lr.x += len;
 res.ur.x += len;
 res.ur.y += len;
 res.ul.y += len;
}

Memory

Higher  
addresses

Lower  
addresses

Stephen Chong, Harvard University

Representation of Structs

•Two contiguous words
•Alternatively, use two registers?

 5

struct Point { int x; int y; };

x

y

struct Rect { struct Point ll,lr,ul,ur; };

•Eight contiguous words
ur.x

ur.y

ul.x

ul.y

lr.x

lr.y

ll.x

ll.y

Stephen Chong, Harvard University

Accessing Struct Members

•How do we access a member of a record? E.g., r.ul.y
•Assume that $t0 holds the base address of r
•Calculate offsets of path relative to base address

•.ul = sizeof(Point) + sizeof(Point) = 8 + 8
•.y = sizeof(int) = 4

•So r.ul.y can be accessed at address $t0 + 20

 6

struct Rect r = ...;
int i = r.ul.y;

ur.x

ur.y

ul.x

ul.y

lr.x

lr.y

ll.x

ll.y

$t0 ⟶

struct Rect { struct Point ll,lr,ul,ur; };
struct Point { int x; int y; };

lw $t2, 20($t0) 8

8

4

Stephen Chong, Harvard University

Copy-In/Copy-Out

•How do we handle assignment of records?  
 
 
 

•Copy all elements out of source, and into target
•Equivalent to doing word-level operations:  
 

•For large structs, could use something like memcpy to
copy contiguous memory

 7

struct Rect mkSquare(struct Point ll, int len) {
 struct Rect res;
 res.lr = ll;
 ...
}

 res.lr.x = ll.x;
 res.lr.y = ll.y;

Stephen Chong, Harvard University

Procedure Calls

•Similarly, when we call a procedure we copy
arguments in and result out
•Caller sets aside additional space in frame for results

that are bigger than 2 words

•Sometimes this is called “call-by-value” or  
“pass-by-value”
•Bad terminology
•Copy-in/copy-out is better

•Problem: expensive for large records

 8

Stephen Chong, Harvard University

Pass-by-Reference

•Instead of copy-in/copy-out, caller can pass address of struct
•Called pass-by-reference

 9

void mkSquare(struct Point *ll, int len,
 struct Rect *res) {
 res->lr = res->ul = res->ur = res->ll = *ll;
 res->lr.x += len;
 res->ur.x += len;
 res->ur.y += len;
 res->ul.y += len;
}

void foo() {
 struct Point origin = {0,0};
 struct Rect unit_sq;
 mkSquare(&origin, 1, &unit_sq);
}

Stephen Chong, Harvard University 10

origin.y

argument: ll

Frame for  
foo()

Frame for  
mkSquare(...)

argument: len = 1

argument: res

origin.x

unit_sq.ur.y

unit_sq.ur.x

unit_sq.ul.y

unit_sq.ul.x

unit_sq.lr.y

unit_sq.lr.x

unit_sq.ll.y

unit_sq.ll.x

⋮

⋮

Stephen Chong, Harvard University

Pass-by-Reference

•In some languages, up to programmer
•E.g., C, C++ argument type indicates if passing value,

pointer, reference

•In other languages, it is a language design
decision
•E.g., Java is call-by-reference only

 11

Stephen Chong, Harvard University

Puzzle: what’s wrong with this?

 12

struct Rect * mkSquare(struct Point *ll, int len) {
 struct Rect res;
 res.lr = res.ul = res.ur = res.ll = *ll;
 res.lr.x += len;
 res.ur.x += len;
 res.ur.y += len;
 res.ul.y += len;

 return &res;
}

Stephen Chong, Harvard University 13

origin.y

Frame for  
foo()

Frame for  
mkSquare(...)

origin.x

argument: ll

argument: len = 1

res.ur.y

res.ur.x

res.ul.y

res.ul.x

res.lr.y

res.lr.x

res.ll.y

res.ll.x

⋮

⋮

⋮

&res
$sp ⟶

$fp ⟶

$31 =

Stephen Chong, Harvard University 14

origin.y

argument: ll

Frame for  
foo()

argument: len = 1

origin.x

res.ur.y

res.ur.x

res.ul.y

res.ul.x

res.lr.y

res.lr.x

res.ll.y

res.ll.x

⋮

⋮

⋮

$sp ⟶

$fp ⟶

$31

Stephen Chong, Harvard University

Stack vs Heap Allocation

•When should we allocate data on stack?

•Only when we know the size of the data

•Only when the data is not used after the
procedure returns!
•Previous example: pointer to res returned by
mkSquare, but res was in stack frame for mkSquare

•Failure to do this leads to bugs and security
vulnerabilities...

•Other data must be allocated in heap
•i.e., use malloc()

 15

Stephen Chong, Harvard University

Managing the Heap

•Some languages (C, C++, ...) have manual memory
management
•Programmers explicitly call malloc() to allocate memory in

heap

•Must remember to call free() to release the memory
• Forgetting to call free results in memory leaks

•Calling free more than once on same pointer (aka double free)
results in bugs and vulnerabilities

•Other languages (Java, OCaml, Python, JavaScript, ...)
have managed memory garbage collection
•Language runtime looks after allocation and garbage collection

•More on this next lecture...
 16

Stephen Chong, Harvard University

Recall Puzzle...

 17

struct Rect * mkSquare(struct Point *ll, int len) {
 struct Rect res;
 res.lr = res.ul = res.ur = res.ll = *ll;
 res.lr.x += len;
 res.ur.x += len;
 res.ur.y += len;
 res.ul.y += len;

 return &res;
}

Stephen Chong, Harvard University

Solution

 18

struct Rect *mkSquare(struct Point *ll, int len) {
 struct Rect *res = malloc(sizeof(struct Rect));
 res->lr = res->ul = res->ur = res->ll = *ll;
 (*res).lr.x += len;
 res->ur.x += len;
 res->ur.y += len;
 (*res).ul.y += len;
 return res;
}

Stephen Chong, Harvard University

Representation of Arrays and Strings

•An array in C is a contiguous region of memory
•A string is just an zero-terminated array of char

•Accessing element: buf[i] is (base of array buf) + i *
size_of(element)

•Same issues of allocating on stack or heap...
 19

void foo() {
 char buf[27];

 buf[0] = 'a';
 buf[1] = 'b';
 ...
 buf[25] = 'z';
 buf[26] = 0;
}

void foo() {
 char buf[27];

 *(buf) = 'a';
 *(buf+1) = 'b';
 ...
 *(buf+25) = 'z';
 *(buf+26) = 0;
}

97buf 98 99 121 122 0...

Stephen Chong, Harvard University

Multi-dimensional Arrays

•In C int m[4][3] yields an array with 4 rows
and 3 columns.
•Laid out in row-major order:

•m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], ...

 20

m[0][0] m[0][1] m[0][2]

m[1][0] m[1][1] m[1][2]

m[2][0] m[2][1] m[2][2]

m[3][0] m[3][1] m[3][2]

Stephen Chong, Harvard University

Multi-dimensional Arrays

•So m[i][j] is located where?
•(base address of m) + (i * 3 * sizeof(int)) + j *
sizeof(int)

 21

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2] m[2][0] m[2][1] m[2][2]

•In C int m[4][3] yields an array with 4 rows
and 3 columns.
•Laid out in row-major order:

•m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], ...

Stephen Chong, Harvard University

Multi-dimensional Arrays

•In Fortran, arrays are laid out in column major
order  
 
 
 

•In ML, there are no multi-dimensional arrays int
array) array.
•Why is knowing this important?

 22

m[0][0] m[0][1] m[0][2]

m[1][0] m[1][1] m[1][2]

m[2][0] m[2][1] m[2][2]

m[3][0] m[3][1] m[3][2]

Stephen Chong, Harvard University

Multi-dimensional Arrays

•In Fortran, arrays are laid out in column major
order  
 
 
 

•In ML, there are no multi-dimensional arrays int
array) array.
•Why is knowing this important?

 23

m[0][0] m[1][0] m[2][0] m[3][0] m[0][1] m[1][1] m[2][1] m[3][1] m[0][2]

Stephen Chong, Harvard University

Constant Strings

•A string constant "foo" is represented as global
data: 
 _string42: 102 111 111 0

•It's usually placed in the text segment so it's read
only.
•allows all copies of the same string to be shared.

•Typical mistake:  
 char *p = "foo";  
 p[0] = ‘b';

 24

Stephen Chong, Harvard University

How do malloc and free work?

•(High-level view only; for more info, see CS61!)
•Upon malloc(n):

•Find an unused space on heap of at least size n
•(Need to mark space as in use)
•Return address of that space

•Upon free(p):
•Mark space pointed to by p as free
•(Need to keep track of how big object is to know how

much space to free)

 25

Stephen Chong, Harvard University

One Option: Free List

•Keep a linked list of contiguous chunks of free
memory
•Each component of list has two words of meta-data
• 1 word points to the next element in the free list
• The other word says how big the object is

 26

next sizenext size

free_list_head

Stephen Chong, Harvard University

One Option: Free List

•To malloc(n):
•Run down list until find a block that is big enough (size ≥ n)
•Divide block, put left overs back on free list
•First-fit vs best-fit?

•To free(p):
•Put object back in free list
•Metadata lets us know how size of object
•Keep list sorted to allow coalescing of adjacent free blocks

 27

next sizenext size

free_list_head

Stephen Chong, Harvard University

Multiple free lists!

•Keep an array of free lists!
•Each list has chunks the same size

•free_list[i] holds chunks of size 2i
•Round requests up to the next power of 2

•When free_list[i] is empty, take a block from
free_list[i+1] and divide it in half, putting both
chunks in free_list[i]

•Alternatively, run through free_list[i-1] and
merge contiguous blocks

 28

Stephen Chong, Harvard University

Modern Languages

•Represent all records (tuples, objects, etc.) using
pointers.
•Makes it possible to support polymorphism.
• e.g., ML doesn't care whether we pass an integer, two-tuple, or
record to the identity function: all represented with 1 word

•Price paid: lots of loads/stores…

•By default, allocate records on the heap.
•Programmer doesn't have to worry about lifetimes.
•Compiler may determine that it's safe to allocate a record

on the stack instead.
•Uses a garbage collector to safely reclaim data.

 29

