
CS153: Compilers
Lecture 11: Compiling Objects

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Project 3 due today
•Project 4 out

•Due Thursday Oct 25 (16 days)

•Project 5 released on Thursday

 2

Stephen Chong, Harvard University

Today

•Object Oriented programming
•What is it
•Dynamic dispatch
•Code generation for methods and method calls
•Fields
•Creating objects
•Extensions
•Type system

 3

Stephen Chong, Harvard University

What Is Object-Oriented Programming?

•Programming based on concept of objects, which are data
plus code

•OOP can be an effective approach to writing large systems
•Objects naturally model entities
•OO languages typically support
• information hiding (aka encapsulation) to support modularity
• inheritance to support code reuse

•Several families of OO languages:
•Prototype-based (e.g. Javascript, Lua)
•Class-based (e.g. C++, Java, C#)

•We focus on the compilation of class-based OO languages

 4

Stephen Chong, Harvard University

Brief Incomplete History of OO

•(Early 60’s) Key concepts emerge in various languages/
programs: sketchpad (Sutherland), SIMSCRIPT (Hoare), and
probably many others.

•(1967) Simula 67 (Dahl, Nygaard) crystalizes many ideas
(class, object, subclass, dispatch) into a coherent OO
language

•(1972) Smalltalk (Kay) introduces the concept of object-
oriented programming (you should try Squeak!)

•(1978) Modula-2 (Wirth)
•(1985) Eiffel (Meyer)
•(1990’s) OO programming becomes mainstream: C++, Java,

C#, …
 5

Stephen Chong, Harvard University

Classes

•What’s the difference between a class and an object?
•A class is a blueprint for objects
•Class typically contains

•Declared fields / instance variables
•Values may differ from object to object

•Usually mutable

•Methods
• Shared by all objects of a class
• Inherited from superclasses

•Usually immutable

•Methods can be overridden, fields (typically) can not
 6

Stephen Chong, Harvard University

Example Java Code

•Every Vehicle is an Object

•Every Car is a Vehicle, every Truck is a Vehicle

•Every Vehicle (and thus every Car and Truck) have a position field and a move method

•Every Car also has a passengers field and an await method

 7

class Vehicle extends Object {
 int position = 0;
 void move(int x) { this.position += x; }
}

class Car extends Vehicle {
 int passengers = 0;
 void await(Vehicle v) {
 if (v.position < this.position) {
 v.move(this.position - v.position);
 } else { this.move(10); }
 }
}

class Truck extends Vehicle {
 void move(int x) { if (x < 55) this.position += x;}
}

Stephen Chong, Harvard University

Example Java Code

•A Car can be used anywhere a Vehicle is expected (because a Car is a Vehicle!)

•Class Truck overrides the move method of Vehicle
•Invoking method o.move(i) will invoke Truck’s move method if o’s class at run time is
Truck

 8

class Vehicle extends Object {
 int position = 0;
 void move(int x) { this.position += x; }
}

class Car extends Vehicle {
 int passengers = 0;
 void await(Vehicle v) {
 if (v.position < this.position) {
 v.move(this.position - v.position);
 } else { this.move(10); }
 }
}

class Truck extends Vehicle {
 void move(int x) { if (x < 55) this.position += x;}
}

Stephen Chong, Harvard University

Code Generation for Objects

•Methods
•How do we generate method body code?
•How do we invoke methods (dispatching)
•Challenge: handling inheritance

•Fields
•Memory layout
•Alignment
•Challenge: handling inheritance

 9

Stephen Chong, Harvard University

Need for Dynamic Dispatch

•Methods look like functions. Can they be treated the same?
•Consider the following Java code

 10

interface Point { int getx(); float norm(); }

class ColoredPoint implements Point {
 ...
 float norm() { return sqrt(x*x+y*y); }
}

class 3DPoint implements Point {
 ...
 float norm() { return sqrt(x*x+y*y+z*z); }
}
Point p = foo();
p.norm();

Stephen Chong, Harvard University

Need for Dynamic Dispatch

•Methods look like functions. Can they be treated the same?
•Consider the following Java code

 11

interface Point { int getx(); float norm(); }

class ColoredPoint implements Point {
 ...
 float norm() { return sqrt(x*x+y*y); }
}

class 3DPoint implements Point {
 ...
 float norm() { return sqrt(x*x+y*y+z*z); }
}
Point p = foo();
p.norm();

If p is object of class ColoredPoint,
should execute ColoredPoint.norm()

If p is object of class 3DPoint,
should execute 3DPoint.norm()

At run time could be either case!

Stephen Chong, Harvard University

Dynamic Dispatch Solution

•So we need some way at run time to figure out which code to
invoke

•Solution: dispatch table (aka virtual method table, vtable)
•Each class has table (array) of function pointers
•Each method of class is at a known index of table

 12

Object o  
of class 3DPoint

class_ptr

... more stuff for the
representation of an object ...

Runtime representation  
of class 3DPoint,

including its dispatch table
Code for

3DPoint.norm()

... more stuff for
the representation
of class 3DPoint ...

getx
norm

⋮

Stephen Chong, Harvard University

What Offset Into the VTable?

•Want to make sure that every object of class B has same
layout of dispatch table
•Even if object is actually a subclass of B!  
 
 
 
 
 

•List methods in order
•Ensures that a dispatch table for class C also looks like a

dispatch table for class B, and for class A
 13

class A {
 void foo() { ... }
}
class B extends A {
 void bar() { ... }
 void baz() { ... }
}

class C extends B {
 void foo() { ... }

 void baz() { ... }
 void quux() { ... }
}

1

2

3 4

Stephen Chong, Harvard University

Dispatch Tables

•Dispatch table for class C looks like a dispatch table for class B
•i.e., address for method foo is at index 0 (offset 0 bytes) 

 address for method bar is at index 1 (offset 4 bytes) 
 address for method baz is at index 2 (offset 8 bytes)

•And it looks like a dispatch table for class A
•i.e., address for method foo is at index 0

 14

A

B

C

foo

bar, baz

quux

&A.foo

&B.bar

&B.baz

Dispatch table
for class B

Dispatch table
for class A

&A.foo

Dispatch table
for class C

&C.foo

&B.bar

&C.baz

&C.quux

Stephen Chong, Harvard University

Generating Code for Methods

•For method declarations
•Methods have implicit argument, the receiver object (i.e., this, self)
•In essence, method bar declared in class B  
 
 
 
is translated like a function  
 void bar(B this, int x)

•For method call o.bar(54)
•Essentially:  
 

•i.e., use vtable to get pointer to appropriate function, invoke it with
receiver and arguments

 15

class B {
 void bar(int x) { ... }
}

void (*f)(obj *,int);
f = o->class_ptr->vtable[offset for bar]
f(o, 54);

Stephen Chong, Harvard University

Fields

•Same basic idea for fields as for methods!

•Representation of object of class 3DPoint has
space to store fields of 3DPoint and
superclasses

 16

class 2DPoint implements Point {
 int x;
 int y;
 ...
}

class 3DPoint implements Point {
 int z;
 ...
}

1
2

3

Object o  
of class 3DPoint

class_ptr

2DPoint.x

2DPoint.y

3DPoint.z

Stephen Chong, Harvard University

Generating Code for Field Accesses

•To access field x.f
•x will be represented as pointer to object

•Need to know (static) type of x
•x.f refers to memory location at appropriate offset

from base of object x

•E.g., reading o.y would translate to
dereferencing address  
o+(offset for y)

 17

Object o  
of class 3DPoint

class_ptr

2DPoint.x

2DPoint.y

3DPoint.z

Stephen Chong, Harvard University

Creating Objects

•new C creates a new object of class C
•Creates record big enough to hold a C object
•Initializes instance variables
•Evaluates to pointer to newly created object

 18

Stephen Chong, Harvard University

Extensions...

•Multiple inheritance
•Typically use multiple vtables (one for each base class)

and switch between them based on the static type
•Other approaches possible

•Separate compilation
•Don’t know how many fields/method in superclass!

(Superclass could be recompiled after subclass)
•Resolve offsets at link or load time

 19

Stephen Chong, Harvard University

Extensions...

•Prototype based OO languages
•Similar approach, but vtable belongs with object (no

classes!)
•Objects are created by cloning other objects
•Many objects will have the same vtable: can share them,

with copy-on-write

•Runtime type check: o instanceof C
•Each object contains pointer to its class, so can figure out

at runtime if a o’s class is a subclass of C
•But how to efficiently store inheritance information in

runtime representation of classes?
 20

Stephen Chong, Harvard University

OO Type Systems

•Visibility
•To support encapsulation, some OO languages provide visibility

restrictions on fields and methods
•Java has private, protected, public (and some more)
• private members accessible only to implementation of class

• public members accessible by any code

• protected members accessible only to implementation of class and
subclasses

•Subclassing vs inheritance
•Somewhat conflated in Java
•Inheritance: reuse code from another class;  

Subclassing: every object of subclass is a superclass object
•C++ has visibility restrictions on inheritance

 21

Stephen Chong, Harvard University

OO Type Systems

•Subclassing vs subtyping
•Not the same!

•No contravariance in argument type in Java methods

•Overriding vs overloading
•Given C.m(T1, T2, ..., Tn) and D.m(S1, S2, ..., Sm)
where C is subclass of D,  
C.m overrides D.m only if T1, T2, ..., Tn = S1, S2, ..., Sm

•Otherwise, D.m just overloads the method name m...

•Null values
•In Java type C for class C is analogous to C option in ML
• Since any object value can be null

•...
 22

