Announcements

• Project 4 out
 • Due Thursday Oct 25 (7 days)
• Project 5 out
 • Due Tuesday Nov 13 (26 days)
• Project 6 will be released Tuesday
Today

- Type checking
- Type inference
Basic Architecture

Source Code → Parsing → Elaboration → Lowering → Optimization → Code Generation → Target Code

Front end

Back end
Undefined Programs

• After parsing, we have AST
• We can interpret AST, or compile it and execute
• But: not all programs are well defined
 • E.g., 3/0, “hello” - 7, 42(19)
• **Types** allow us to rule out many of these undefined behaviors
 • Types can be thought of as an approximation of a computation
 • E.g., if expression e has type `int`, then it means that e will evaluate to some integer value
 • E.g., we can ensure we never treat an integer value as if it were a function

What do we do about other operations that our types don’t rule out? e.g., 3/0
Type Soundness

• Key idea: a well-typed program when executed does not attempt any undefined operation

• Make a model of the source language
 • i.e., an interpreter, or other semantics
 • This tells us where operations are partial
 • Partiality is different for different languages
 • E.g., “Hi” + “ world” and “na”*16 may be meaningful in some languages

• Construct a function to check types: \(tc : AST \rightarrow \text{bool} \)
 • AST includes types (or type annotations)
 • If \(tc \ e \) returns true, then interpreting \(e \) will not result in an undefined operation

• Prove that \(tc \) is correct
type tipe =
 Int_t
| Arrow_t of tipe*tipe
| Pair_t of tipe*tipe

type exp =
 Var of var | Int of int
| Plus_i of exp*exp
| Lambda of var * tipe * exp
| App of exp*exp
| Pair of exp * exp
| Fst of exp | Snd of exp

Note: function arguments have type annotation
let rec interp (env:var->value)(e:exp) =
 match e with
 | Var x -> env x
 | Int i -> Int_v i
 | Plus_i(e1,e2) ->
 (match interp env e1, interp env e2 of
 | Int_v i, Int_v j -> Int_v(i+j)
 | _,_ -> error())
 | Lambda(x,t,e) -> Closure_v{env=env,code=(x,e)}
 | App(e1,e2) ->
 (match (interp env e1, interp env e2) with
 | Closure_v{env=cenv,code=(x,e)},v ->
 interp (extend cenv x v) e
 | _,_ -> error())
let rec tc (env:var->tipe) (e:exp) =
 match e with
 | Var x -> env x
 | Int _ -> Int_t
 | Plus_i(e1,e2) ->
 (match tc env e1, tc env e with
 | Int_t, Int_t -> Int_t
 | _,_ -> error())
 | Lambda(x,t,e) -> Arrow_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 (match (tc env e1, tc env e2) with
 | Arrow_t(t1,t2), t ->
 if (t1 != t) then error() else t2
 | _,_ -> error())
Type checker is almost like an approximation of the interpreter!

But interpreter evaluates function body only when function applied

Type checker always checks body of function

We needed to assume the input of a function had some type τ_1, and reflect this in type of function $(\tau_1 \rightarrow \tau_2)$

At call site $(e_1 \ e_2)$, we don’t know what closure e_1 will evaluate to, but can calculate type of e_1 and check that e_2 has type of argument
Growing the Language

• Adding booleans...

```ocaml
type tipe = ... | Bool_t

type exp = ... | True | False | If of exp*exp*exp

let rec interp env e = ...
| True -> True_v
| False -> False_v
| If(e1,e2,e3) -> (match interp env e1 with
    True_v -> interp env e2
    | False_v -> interp env e3
    | _ -> error())
```
let rec tc (env:var->tipe) (e:exp) =
 match e with

 ...
 | True -> Bool_t
 | False -> Bool_t
 | If(e1,e2,e3) ->
 (let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3) in
 match t1 with
 | Bool_t ->
 if (t2 != t3) then error() else t2
 | _ -> error())
Type Inference

• Type checking is great if we already have enough type annotations
 • For our simple functional language, sufficed to have type annotations for function arguments
• But what about if we tried to infer types?
• Key idea: we will “guess” each missing type annotation, and update our guess based on how the program uses that function and function argument

```ocaml
let rec tc (env:(var*tipe) list) (e:exp) =
  match e with
  | Lambda(x,e) ->
    (let t = guess() in
      Arrow_t(t,tc (extend env x t) e))
```
Extend Types with Guesses

- A guess represents an initially unknown type
- Type inference will update the type as it gets more information

```plaintext
type tipe =
  Int_t
| Arrow_t of tipe*tipe
| Guess of (tipe option ref)

fun guess() = Guess(ref None)
```
Must Handle Guesses

| Lambda(x,e) -> let t = guess() |
| in Arrow_t(t,tc (extend env x t) e) |
| App(e1,e2) -> (match tc env e1, tc env e2 with |
| Arrow_t(t1,t2), t -> |
| (match t1 with |
	Guess g -> (match !g with	
		None -> g := t; t2
		Some t1 -> if t1 != t
		then error() else t2)
	_ -> if t1 != t then error() else t2)	
	Guess g, t -> (match !g with	
	None -> let t2 = guess() in	
	g := Some(Arrow_t(t,t2)); t2	
	Some t1 -> if t1 != t then error() else t2)	
let rec tc (env: (var*tipe) list) (e:exp) =		
match e with		
Var x -> lookup env x		
Lambda(x,e) ->		
 let t = guess() in
 Arrow_t(t,tc (extend env x t) e)
| App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in
 if unify t1 (Arrow_t(t2,t)) then t
 else error()}
let rec unify (t1:tipe) (t2:tipe):bool =
if (t1 = t2) then true else
match t1,t2 with
| Guess(ref(Some t1')), _ -> unify t1' t2
| Guess(r as (ref None)), t2 ->
 (r := Some t2; true)
| _, Guess(_) -> unify t2 t1
| Int_t, Int_t -> true
| Arrow_t(t1a,t1b), Arrow_t(t2a,t2b)) ->
 unify t1a t2a && unify t1b t2b
• Consider: \texttt{fun x \to x x}

• We guess \texttt{g1} for \texttt{x}
 • We see \texttt{App}(x,x)
 • recursive calls say we have \texttt{t1} = \texttt{g1} and \texttt{t2} = \texttt{g1}
 • We guess \texttt{g2} for the result.
 • And \texttt{unify}(\texttt{g1}, \texttt{Arrow_t(g1,g2)})
 • So we set \texttt{g1} := \texttt{Some(Arrow_t(g1,g2))}

• What happens if we print the type?
Fixes

• Do an “occurs” check in unify:
 let rec unify (t1:tipe) (t2:tipe):bool =
 if (t1 = t2) then true else
 case (t1,t2) of
 (Guess(r),_) when !r = None ->
 if occurs r t2 then error()
 else (r := Some t2; true)
 | ...
 | ...

• Alternatively, be careful not to loop anywhere.
 • In particular, when comparing $t_1 = t_2$, we must code up a
 graph equality, not a tree equality.
Polymorphism

- Consider: `fun x -> x`
- We guess `g1` for `x`
 - We see `x`
 - So `g1` is the result.
 - We return `Arrow_t(g1,g1)`
 - `g1` is unconstrained
 - We could constraint it to `Int_t` or `Arrow_t(Int_t,Int_t)` or any type.
 - In fact, we could re-use this code at any type!
ML Expressions

type exp =
 Var of var
 | Int of int
 | Lambda of var * exp
 | App of exp * exp
 | Let of var * exp * exp

let f = fun x -> x in (f 3, f "foo")
let rec tc (env: (var*tipe) list) (e:exp) =
match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 let t = guess() in
 Arrow_t(t,tc (extend env x t) e) end
 | App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in if unify t1 (Fn_t(t2,t)) then t
 else error()
 | Let(x,e1,e2) ->
 (tc env e1; tc env (substitute(e1,x,e2)))
Example

let id = fn x -> x in
 (id 3, id "fred") end

is type checked as if it were

((fun x -> x) 3, (fun x -> x) "fred")
Effects

• But this can be inefficient!
• And in a type system that considers effects, does not accurately reflect how the program executes

\[
\text{let id} = \text{(print } "Hello"; \text{ fn x } \rightarrow \text{ x)} \\
\text{in} \\
(\text{id 42, id } "fred")
\]

is not equivalent to

\[
((\text{print } "Hello"; \text{ fn x } \rightarrow \text{ x)} \ 42, \\
(\text{print } "Hello"; \text{ fn x } \rightarrow \text{ x)} \ "fred")
\]
Hindley-Milner Type Inference

- **Polymorphism** is the ability of code to be used on values of different types.
 - E.g., polymorphic function can be invoked with arguments of different types
 - Polymorph means “many forms”
- OCaml has polymorphic types
 - e.g., `val swap : 'a ref -> 'a -> 'a = ...`
- But type inference for full polymorphic types is undecidable...
- OCaml has restricted form of polymorphism that allows type inference: **let-polymorphism** aka prenex polymorphism
 - Allow let expressions to be typed polymorphically, i.e., used at many types
 - Doesn’t require copying of let expressions
 - Requires clear distinction between polymorphic types and non-polymorphic types...
Hindley-Milner Type Inference

```ocaml
type tvar = string

type tipe =
    Int_t
  | Arrow_t of tipe * tipe
  | Guess of (tipe option ref)
  | Var_t of tvar

type tipe_scheme =
    Forall of (tvar list * * tipe)
```

Type variables are placeholders for types

Type schemes are polymorphic types
let rec tc (env:(var*tipe_scheme) list) (e:exp) =
 match e with
 | Var x -> instantiate(lookup env x)
 | Int _ -> Int_t
 | Lambda(x,e) ->
 let g = guess() in
 Arrow_t(g,tc (extend env x (Forall([],g)) e)
 | App(e1,e2) ->
 let (t1,t2,t) = (tc env e1,tc env e2,guess())
 in if unify(t1,Fn_t(t2,t)) then t else error()
 | Let(x,e1,e2) ->
 let s = generalize(env,tc env e1) in
 tc (extend env x s) e2 end
let instantiate(s:tipe_scheme):tipe =
 match s with
 | Forall(vs,t) ->
 let b = map (fn a -> (a,guess())) vs in
 substitute(b,t)
let generalize(e:env,t:tipe):tipe_scheme =
 let t_gs = guesses_of_tipe t in
 let env_list_gs =
 map (fun (x,s) -> guesses_of s) e in
 let env_gs = foldl union empty env_list_gs in
 let diff = minus t_gs env_gs in
 let gs_vs =
 map (fun g -> (g,freshvar())) diff in
 let tc = subst_guess(gs_vs,t) in
 Forall(map snd gs_vs, tc)
end
Explanation

• Every variable in environment maps to a type scheme, i.e., universally quantified type, possibly with empty list of quantifiers

• Each let-bound variable is generalized
 • E.g., \(g \rightarrow g \) generalizes to \(\text{Forall } a. \ a \rightarrow a \)

• Each use of let-bound variable is instantiated with fresh guesses
 • E.g., if \(f: \text{Forall } a. \ a \rightarrow a \), then if \(f \ e \), we instantiate the type of \(f \) to \(g \rightarrow g \) for some fresh guess \(g \)

• But only generalize variables that appear only in let and not in environment
 • Variables in environment may be later constrained, e.g.,
 function \(f(y) = \text{let } g = \text{fn } x \rightarrow (x, y) \text{ in } (g \ y + 7) \)
 • In expression \(\text{fn } x \rightarrow (x, y) \) can generalize for type of \(x \), but not for type of \(y \)
Difficulties with Mutability

let r = ref (fun x -> x) (* r : Forall 'a: ref('a->'a) *)
in
 r := (fun x -> x+1); (* r: ref(int->int) *)
 (!r)("fred") (* r: ref(string->string) *)
Value Restriction

• When is \(\text{let } x = e_1 \text{ in } e_2 \) equivalent to \(\text{subst}(e_1, x, e_2) \)?

• If \(e_1 \) has no side effects:
 • reads/writes/allocation of refs/arrays.
 • input, output.
 • non-termination.

• So only generalize when \(e_1 \) is a value
 • or something easy to prove equivalent to a value
let rec tc (env:var->tipe_scheme) (e:exp) =
match e with
 ... |
 | Let(x,e1,e2) ->
 let s =
 if may_have_effects e1 then
 Forall([],tc env e1)
 else generalize(env,tc env e1) in
 tc (extend env x s) e2
end