CS153: Compilers
Lecture 14: Type Checking

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Announcements

• Project 4 out
 • Due Thursday Oct 25 (7 days)
• Project 5 out
 • Due Tuesday Nov 13 (26 days)
• Project 6 will be released Tuesday
Today

• Type checking
• Type inference
Basic Architecture

Source Code → Parsing → Elaboration → Lowering → Optimization → Code Generation → Target Code

Front end

Back end
Elaboration

Untyped Abstract Syntax Trees

Typed Abstract Syntax Trees
Undefined Programs

• After parsing, we have AST
• We can interpret AST, or compile it and execute
• But: not all programs are well defined
 • E.g., 3/0, “hello” - 7, 42(19)
• **Types** allow us to rule out many of these undefined behaviors
 • Types can be thought of as an approximation of a computation
 • E.g., if expression \(e \) has type `int`, then it means that \(e \) will evaluate to some integer value
 • E.g., we can ensure we never treat an integer value as if it were a function

What do we do about other operations that our types don’t rule out? E.g., 3 / 0
Type Soundness

• Key idea: a well-typed program when executed does not attempt any undefined operation

• Make a model of the source language
 • i.e., an interpreter, or other semantics
 • This tells us were operations are partial
 • Partiality is different for different languages
 • E.g., “Hi” + “ world” and “na”*16 may be meaningful in some languages

• Construct a function to check types: $tc : AST \rightarrow bool$
 • AST includes types (or type annotations)
 • If $tc \ e$ returns true, then interpreting e will not result in an undefined operation

• Prove that tc is correct
Simple Language

type tipe =
 Int_t
| Arrow_t of tipe*tipe
| Pair_t of tipe*tipe

type exp =
 Var of var | Int of int
| Plus_i of exp*exp
| Lambda of var * tipe * exp
| App of exp*exp
| Pair of exp * exp
| Fst of exp | Snd of exp

Note: function arguments have type annotation
let rec interp (env:var->value)(e:exp) =
 match e with
 | Var x -> env x
 | Int i -> Int_v i
 | Plus_i(e1,e2) ->
 (match interp env e1, interp env e2 of
 | Int_v i, Int_v j -> Int_v(i+j)
 | _,_ -> error())
 | Lambda(x,t,e) -> Closure_v{env=env,code=(x,e)}
 | App(e1,e2) ->
 (match (interp env e1, interp env e2) with
 | Closure_v{env=ccenv,code=(x,e)},v ->
 interp (extend ccenv x v) e
 | _,_ -> error())

Interpreter
let rec tc (env:var->tipe) (e:exp) =
 match e with
 | Var x -> env x
 | Int _ -> Int_t
 | Plus_i(e1,e2) ->
 (match tc env e1, tc env e with
 | Int_t, Int_t -> Int_t
 | _,_ -> error())
 | Lambda(x,t,e) -> Arrow_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 (match (tc env e1, tc env e2) with
 | Arrow_t(t1,t2), t ->
 if (t1 != t) then error() else t2
 | _,_ -> error())
Notes

• Type checker is almost like an approximation of the interpreter!
 • But interpreter evaluates function body only when function applied
 • Type checker always checks body of function
• We needed to assume the input of a function had some type t_1, and reflect this in type of function ($t_1 \rightarrow t_2$)
• At call site ($e_1 \ e_2$), we don’t know what closure e_1 will evaluate to, but can calculate type of e_1 and check that e_2 has type of argument
Growing the Language

• Adding booleans...

type tipe = ... | Bool_t

type exp = ... | True | False | If of exp*exp*exp

let rec interp env e = ...
| True -> True_v
| False -> False_v
| If(e1,e2,e3) -> (match interp env e1 with
 True_v -> interp env e2
 | False_v -> interp env e3
 | _ -> error())
let rec tc (env:var->tipe) (e:exp) =
 match e with
 ...
 | True -> Bool_t
 | False -> Bool_t
 | If(e1,e2,e3) -> (let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3) in
 match t1 with
 | Bool_t ->
 if (t2 != t3) then error() else t2
 | _ -> error())
Type Inference

- Type checking is great if we already have enough type annotations
 - For our simple functional language, sufficed to have type annotations for function arguments
- But what about if we tried to infer types?
- Key idea: we will “guess” each missing type annotation, and update our guess based on how the program uses that function and function argument

```ocaml
let rec tc (env:(var*tipe) list) (e:exp) =
  match e with
  | Lambda(x,e) ->
    (let t = guess() in
     Arrow_t(t,tc (extend env x t) e))
```
Extend Types with Guesses

• A guess represents an initially unknown type
 • Type inference will update the type as it gets more information

```plaintext
type tipe =
  Int_t
| Arrow_t of tipe*tipe
| Guess of (tipe option ref)

fun guess() = Guess(ref None)
```
Must Handle Guesses

\begin{verbatim}
| Lambda(x,e) -> let t = guess()
 in Arrow_t(t,tc (extend env x t) e)
| App(e1,e2) -> (match tc env e1, tc env e2 with
 | Arrow_t(t1,t2), t ->
 (match t1 with
 | Guess g -> (match !g with
 | None -> g := t; t2
 | Some t1 -> if t1 != t
 then erro() else t2)
 | _ -> if t1 != t then erro() else t2)
 | Guess g, t -> (match !g with
 | None -> let t2 = guess() in
 g := Some(Arrow_t(t,t2)); t2)
 | Some t1 -> if t1 != t then erro() else t2)
\end{verbatim}
let rec tc (env: (var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 let t = guess() in
 Arrow_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in
 if unify t1 (Arrow_t(t2,t)) then t
 else error()
Unification

let rec unify (t1:tipe) (t2:tipe):bool =
 if (t1 == t2) then true else
 match t1,t2 with
 | Guess(ref(Some t1')), _ -> unify t1' t2
 | Guess(r as (ref None)), t2 ->
 (r := Some t2; true)
 | _, Guess(_) -> unify t2 t1
 | Int_t, Int_t -> true
 | Arrow_t(t1a,t1b), Arrow_t(t2a,t2b)) ->
 unify t1a t2a && unify t1b t2b
Subtlety

- Consider: fun x -> x x

- We guess g1 for x
 - We see App(x,x)
 - recursive calls say we have t1=g1 and t2=g1
 - We guess g2 for the result.
 - And unify(g1,Arrow_t(g1,g2))
 - So we set g1 := Some(Arrow_t(g1,g2))

- What happens if we print the type?
Fixes

• Do an “occurs” check in unify:

```ocaml
let rec unify (t1:tipe) (t2:tipe):bool =
  if (t1 == t2) then true else
  case (t1,t2) of
    (Guess(r),_) when !r = None ->
      if occurs r t2 then error()
      else (r := Some t2; true)
    | ... 
```

• Alternatively, be careful not to loop anywhere.
 • In particular, when considering the cases for \((t1, t2)\), make sure it doesn't go into an infinite loop.
Polymorphism

• Consider: `fun x -> x`

• We guess `g1` for `x`
 • We see `x`
 • So `g1` is the result.
 • We return `Arrow_t(g1,g1)`
 • `g1` is unconstrained
 • We could constraint it to `Int_t` or `Arrow_t(Int_t,Int_t)` or any type.
 • In fact, we could re-use this code at any type!
ML Expressions

```plaintext
type exp =
  Var of var
|  Int of int
| Lambda of var * exp
| App of exp*exp
| Let of var * exp * exp

let f = fun x -> x in (f 3, f "foo")
```
let rec tc (env: (var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 let t = guess() in
 Arrow_t(t,tc (extend env x t) e) end
 | App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in if unify t1 (Fn_t(t2,t)) then t
 else error()
 | Let(x,e1,e2) ->
 (tc env e1; tc env (substitute(e1,x,e2)))
let id = fn x -> x
in
 (id 3, id "fred")
end

is type checked as if it were

((fun x -> x) 3, (fun x -> x) "fred")
• But this can be inefficient!
• And in a type system that considers effects, does not accurately reflect how the program executes

\[
\text{let } \text{id} = (\text{print } "Hello"; \text{fn } x \rightarrow x) \\
\text{in} \\
(\text{id }42, \text{id }"fred")
\]

is not equivalent to

\[
((\text{print } "Hello"; \text{fn } x\rightarrow x) \ 42, \\
(\text{print } "Hello"; \text{fn } x\rightarrow x) \ "fred")
\]
Polymorphism is the ability of code to be used on values of different types.
- E.g., polymorphic function can be invoked with arguments of different types
- Polymorph means “many forms”

OCaml has polymorphic types
- e.g., `val swap : 'a ref -> 'a -> 'a = ...`

But type inference for full polymorphic types is undecidable...

OCaml has restricted form of polymorphism that allows type inference: let-polymorphism aka prenex polymorphism
- Allow let expressions to be typed polymorphically, i.e., used at many types
- Doesn’t require copying of let expressions
- Requires clear distinction between polymorphic types and non-polymorphic types...
Hindley-Milner Type Inference

```ocaml
type tvar = string

type tipe =
    Int_t
  | Arrow_t of tipe * tipe
  | Guess of (tipe option ref)
  | Var_t of tvar

type tipe_scheme =
    Forall of (tvar list * tipe)
```

Type variables are placeholders for types

Type schemes are polymorphic types
let rec tc (env:(var*tipe_scheme) list) (e:exp) =
 match e with
 | Var x -> instantiate(lookup env x)
 | Int _ -> Int_t
 | Lambda(x,e) ->
 let g = guess() in
 Arrow_t(g,tc (extend env x (Forall([],g)) e)
 | App(e1,e2) ->
 let (t1,t2,t) = (tc env e1,tc env e2,guess()) in if unify(t1,Fn_t(t2,t)) then t else error()
 | Let(x,e1,e2) ->
 let s = generalize(env,tc env e1) in
 tc (extend env x s) e2 end
let instantiate(s:tipe_scheme):tipe =
 match s with
 | Forall(vs,t) ->
 let b = map (fn a -> (a,guess())) vs in
 substitute(b,t)
let generalize(e:env,t:tipe):tipe_scheme =
 let t_gs = guesses_of_tipe t in
 let env_list_gs =
 map (fun (x,s) -> guesses_of s) e in
 let env_gs = foldl union empty env_list_gs
 let diff = minus t_gs env_gs in
 let gs_vs =
 map (fun g -> (g,freshvar())) diff in
 let tc = subst_guess(gs_vs,t) in
 Forall(map snd gs_vs, tc)
end
Explanation

• Every variable in environment maps to a type scheme, i.e., universally quantified type, possibly with empty list of quantifiers.

• Each let-bound variable is generalized
 • E.g., $g \rightarrow g$ generalizes to $\text{Forall } a. \ a \rightarrow a$

• Each use of let-bound variable is instantiated with fresh guesses
 • E.g., if $f: \text{Forall } a. \ a \rightarrow a$, then if $f\ e$, we instantiate the type of f to $g \rightarrow g$ for some fresh guess g

• But only generalize variables that appear only in let and not in environment
 • Variables in environment may be later constrained, e.g.,
 \[
 \text{function } f(y) = \text{let } g = \text{fn } x \rightarrow (x, \ y) \text{ in } (g \ y + 7)
 \]
 • In expression $\text{fn } x \rightarrow (x, \ y)$ can generalize for type of x, but not for type of y
Difficulties with Mutability

```ocaml
let r = ref (fun x -> x)
    (* r : Forall 'a: ref('a->'a) *)
in
    r := (fun x -> x+1); (* r: ref(int->int) *)
    (!r)("fred") (* r: ref(string->string) *)
```
Value Restriction

• When is \(\text{let } x = e_1 \text{ in } e_2\) equivalent to \(\text{subst}(e_1, x, e_2)\)?

• If \(e_1\) has no side effects:
 • reads/writes/allocation of refs/arrays.
 • input, output.
 • non-termination.

• So only generalize when \(e_1\) is a value
 • or something easy to prove equivalent to a value
let rec tc (env:var->tipe_scheme) (e:exp) =
match e with
 ...
| Let(x,e1,e2) ->
 let s =
 if may_have_effects e1 then
 Forall([],tc env e1)
 else generalize(env,tc env e1)
 in
 tc (extend env x s) e2
end