John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 16:
Local Optimization II

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Annour

*Project 4 out
e Due today!

*Project 5 out
e Due Tuesday Nov 13 (19 days)

*Project 6 out
e Due Tuesday Nov 20 (26 days)

Stephen Chong, Harvard University 2

* Monadic form
e Implementation of some local optimizations

Stephen Chong, Harvard University 3

Monadic Form

*We will put programs into mon

A syntactic form that lets us easily
effecting expressions from pure ex

eEnable simpler implementations o

adic form
distinguish side-
nressions

f optimizations

e Take CS152 to find out why it's ca

led monadic form!

e Recall: assume that variable names are distinct

Monadic Form

datatype operand =
(* small, pure expressions, okay to duplicate *)
Int of int | Bool of bool | Var of var

and value =

(* larger, pure expressions, okay to eliminate ¥*)
Op of operand

Fn of var * exp

Pair of operand * operand

Fst of operand | Snd of operand

Primop of primop * (operand list)

and exp =

(* control & effects: deep thoughts needed here *)
Return of operand

LetvValue of var * value * exp

LetCall of var * operand * operand * exp

LetIf of var * operand * exp * exp * exp

Converting to Monadic Form

eSimilar to lowering to MIPS:

eoperands are either variables or constants.

* Means we don't have to worry about duplicating operands since they
are pure and aren't big.

*We give a (unique) name to more complicated terms by binding it
with a let

» that will allow us to easily find common sub-expressions.

» the uniqueness of names ensures we don't run into capture problems
when substituting.

*We keep track of those expressions that are guaranteed to be pure.

* makes doing inlining or dead-code elimination easy.

*We flatten out let-expressions.

* more scope for factoring out common sub-expressions.

(x+42+y) *

let t2 =
t3 =
tl =
t5 =
t6 =
td =
t7

in t7

Stephen Chong, Harvard University

(x+42+2z)

Exe

% let tl

t4

t7

in t7
x+42

t2+y
t3
X+42
t5+2z
t6
tl*td

>

= (let t2 = x+42

t3 = t2+y in t3)
= (let t5 = x+42

t6 = t5+z 1in t6)
= tl*td

let t2 = x+42

t3 = t2+y

t6 = t2+z

t7 = t3*t6
in t7

Some General M

e Optimizations in essence rewrite expressions according to
equivalences

°fL.g.,
°]. let Xx = v in e == e[x~V]
2. (fun x -> e) v==1let x = v 1n e

3. let x =(let y = e1 1n e2) 1n e3s

let vy = e1 1n let x = ez 1n e3

o], e; e

let x=e; 1in let y=e; 1in x y

.5. (el,...,en) ——
let X1=el eee Xn=en in (X]_ | AL 4 Xn)

Stephen Chong, Harvard University 8

What About

*\We should rewrite when we improve the
program

). (fun x -=> e) v = let x = v 1n e

3. let x = v in e > e

(when x doesn't occur in e)

°4., let x v 1n e ¢ e[x~V]

Stephen Chong, Harvard University

Let Reduce or Let Expand?

°*Reducing let x = v in e to e[x~V]
is profitable when e[x~Vv] is “no bigger”

°e.g., when x does not occur in e
(dead code elimination)

°e.g., when x occurs at most once in e

°e.g., when v is small (constant or variable)
(constant & copy propagation)

ee.g., when further optimizations reduce the size of the
resulting expression.

Let Reduce or Let Expand?

°*Expanding e[x~»v] to let x = v in e
can be good for shrinking code
(common sub-expression elimination)

°L.g., (x*42+y) + (x*42+2)
becomes
let w = x*42 1n
(w+y) + (w+2z)

Reduction Algorithms

e Constant folding

ereduce if's and arithmetic when args are constants

e Operand propagation

°replace each LetValue(x,0p(w),e) with e[x~w]

*why can't we do Letvalue(x,v,e) with e[x~»V]?

e Common Sub-Value

elimination

°replace each Letvalue(x,v,..LetValue(y,v,e),..) with

LetValue(x,v,..€

e Dead Value eliminati

(Y—X]...)

on

*When e doesn't contain x, replace Letvalue(x,v,e) with e

Constant F

let rec cfold exp (e:exp) : exp =
match e with
| Return w -> Return w
| Letvalue(x,v,e) ->
LetValue(x, cfold val v, cfold exp e)
| LetCall(x,f,ws,e) ->
LetCall(x,f,ws,cfold exp e)
| LetIf(x,Bool true,el,e2,e)->
cfold exp (flatten x el e)
| LetIf(x,Bool false,el,e2,e)->
cfold exp (flatten x e2 e)
| LetIf(x,w,el,e2,e)->
LetIf(x,w,cfold el,cfold e2,cfold e)

Stephen Chong, Harvard University 13

Flatten

*Turn “let x = el in €2” into an exp

and flatten (x:var) (el:exp) (e2:exp):exp =

match el with

| Return w -> LetVal(x,0p w,e2)

| Letval(y,v,e’) ->
LetVal(y,v,flatten x e’ e2)

| LetCall(y,f,ws,e’) ->
LetCall(y,f,ws,flatten x e’ e2)

| Letif(y,w,et,ef,ec) ->
LetIf(y,w,et,ef,flatten x ec e2)

Stephen Chong, Harvard University 14

Constant Folding ctd.

and cfold val (v:value):value =

match v with
Fn(x,e) =-> Fn(x,cfold exp e)
Primop(Plus,[Int 1,Int J]) -> Op(Int(1i+]))
Primop(Plus,[Int 0,v]) -> Op(V)
Primop(Plus,[v,Int 0]) -> Op(V)
Primop(Minus,[Int i1,Int J]) -> Op(Int(i-3))
Primop(Minus,[v,Int 0]) -> Op(V)
Primop(Lt,[Int 1,Int j]) -> Op(Bool(1i<j))
Primop(Lt,[Vvl,v2]) ->

1f vl = v2 then Op(Bool false) else v

| v => v

Operand Propagation

let rec cprop exp(env:var->oper option) (e:exp):exp =
match e with
| Return w -> Return (cprop oper env w)
| Letvalue(x,0p w,e) ->
cprop exp (extend env X (cprop oper env w)) e
| Letvalue(x,v,e) ->
LetValue(x,cprop val env v,Cprop exp env e)
| LetCall(x,f,w,e) ->
LetCall(x,cprop oper env f, cprop oper env w,
Cprop exp env e)
| LetIf(x,w,el,e2,e) ->
LetIf(x,cprop oper env w,
cprop exp env el, cprop exp env ez,
Cprop exp env e)

Operand Propagation ctd

and cprop oper env w =
match w with
| var x ->
(match env x with | None -> w | Some w2 -> w2)
| _ > w

and cprop val env v =

match v with

| Fn(x,e) -> Fn(X,cprop_exp env e)

| Pair(wl,w2) ->

Pair (cprop oper env wl, cprop oper env w2)

Fst w -> Fst(cprop oper env w)
Snd w -> Snd(cprop oper env w)
Primop(p,ws) —-> Primop(p,map (Cprop oper env) ws)
Op(_) -> raise Impossible

Common Value Eli

let rec cse exp(env:value->var option) (e:exp):exp =
match e with
| Return w -> Return w
| Letvalue(x,v,e) ->
(match env v with
| None -> LetValue(x,cse val env v,
cse exp (extend env v xX) e)
| Some y -> LetValue(x,Op(Var y),cse exp env e))
| LetCall(x,f,w,e) -> LetCall(x,f,w,cse exp env e)
| LetIf(x,w,el,e2,e) ->
LetIf(x,w,cse exp env el,cse exp env e2,
cse _exp env e)
and cse val env v =
match v with | Fn(x,e) -> Fn(X,cse exp env e)
| v => v

Stephen Chong, Harvard University 18

Dead Value Eliminati

let rec dead exp (e:exp) : exp =
match e with
Return w -> Return w
LetValue(x,v,e) ->
1f count occurs x e = 0 then dead exp e
else LetValue(x,v,dead exp e)
| LetCall(x,f,w,e) ->
LetCall(x,f,w,dead exp env e)
| LetIf(x,w,el,e2,e) ->
LetIf(x,w,dead exp env el,
dead exp env e2,dead exp env e)

Stephen Chong, Harvard University 19

Comments

e [t's possible to fuse constant folding, operand propagation,
common value elimination, and dead value elimination into
one giant pass.

eone env to map variables to operands
eone env to map values to variables
eon way back up, return a table of use-counts for each variable.

* There are plenty of improvements:

ee.g., sort operands of commutative operations so that we get more
common sub-values.

ee.g., keep an env mapping variables to values and use this to reduce
fst/snd operations.

*LetValue(x,Pair(wi,w2),..,LetValue(y,Snd(Op x),..)
becomes LetValue(x,Pair(wi,wz2),..,Letvalue(y,Op wz,..)

Function Inlining

*Replace
LetValue(f,Fn(x,el)),..LetCall(y,f,w,e2)

with

LetValue(f,Fn(x,el)),..
LetValue(y,LetValue(x,0p w,el),e2)..)

e Problems:

e Monadic form doesn't have nested Let's!
(so we must flatten out the nested let.)

e Bound variables get duplicated
(so we rename them as we flatten them out.)

When to Inli

e Recall heuristics from last week:

e Expand only function call sites that are called
frequently

e Expand only functions with small bodies
e Expand functions that are called only once

* Dead function elimination will remove the now unused
function

Stephen Chong, Harvard University 22

Optimizations So Far...

e Constant folding
e Operand propagation
e copy propagation: substitute a variable for a variable

e constant propagation: substitute a constant for a
variable

e Dead value elimination
e Common sub-value elimination
 Function inlining

Optimizing Function Calls

*\We never eliminate LetCall (x, £,w, e) since the call
might have effects

e But if we can determine that £ is a function without side
effects, then we could treat this like a Letval declaration.
*Then we get cse, dce, etc. on function calls!
°F.o., fact(10000) + fact(10000) becomes
let t = fact(10000) in t + t
*|n general, we won't be able to tell if £ has effects.

e|dea: use a modified type-inference to figure out which functions
nave side effects

e|ldea 2: make the programmer distinguish between functions that
nave effects and those that do not

Optimizing Conditionals

e 1f v then e else e
becomes
e

e if v then ..(if v then el else e2).. else e3 becomes
1f v then ..el..else e3

¢ Jet x = if v then el else e2 in e3
becomes
if v then let x=el in e3 else let x=e2 in e3

e 1if v then ..let x=vl.. else ..let y=vl..
becomes
let z=v1l in 1f v then ..let x=z.. else ..let y=z..
(when vars(v1) defined before the if)

e Jlet x=vl in (if v then ..x.. else ..(no x)..)
becomes
if v then (let x=vl in ..x..) else ..(no x)..

