CS153: Compilers
Lecture 17: Control Flow Graph and Data Flow Analysis

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Announcements

• Project 5 out
 • Due Tuesday Nov 13 (14 days)

• Project 6 out
 • Due Tuesday Nov 20 (21 days)

• Project 7 will be released today
 • Due Thursday Nov 29 (30 days)
Today

• Control Flow Graphs
 • Basic Blocks

• Dataflow Analysis
 • Available Expressions
Optimizations So Far

• We’ve look only at local optimizations
 • Limited to “pure” expressions
 • Avoid variable capture by having unique variable names
Next Few Lectures

• Imperative Representations
 • Like MIPS assembly at the instruction level.
 • except we assume an infinite # of temps
 • and abstract away details of the calling convention
 • But with a bit more structure.

• Organized into a Control-Flow graph
 • nodes: labeled basic blocks of instructions
 • single-entry, single-exit
 • i.e., no jumps, branching, or labels inside block
 • edges: jumps/branches to basic blocks

• Dataflow analysis
 • computing information to answer questions about data flowing through the graph.
Control-Flow Graphs

• Graphical representation of a program
• Edges in graph represent control flow: how execution traverses a program
• Nodes represent statements

```plaintext
x := 0;
y := 0;
while (n > 0) {
    if (n % 2 = 0) {
        x := x + n;
y := y + 1;
    }
    else {
        y := y + n;
x := x + 1;
    }
n := n - 1;
}print(x);
```

```
x := 0
y := 0
n > 0
n%2=0
x:=x+n
y:=y+n
y:=y+1
x:=x+1
n:=n-1
print(x)
```
Basic Blocks

• We will require that nodes of a control flow graph are **basic blocks**
 • Sequences of statements such that:
 • Can be entered only at beginning of block
 • Can be exited only at end of block
 ‣ Exit by branching, by unconditional jump to another block, or by returning from function
 • Basic blocks simplify representation and analysis
Basic Blocks

- Basic block: single entry, single exit

```plaintext
x := 0;
y := 0;
while (n > 0) {
    if (n % 2 == 0) {
        x := x + n;
        y := y + 1;
    } else {
        y := y + n;
        x := x + 1;
    }
    n := n - 1;
}
print(x);
```
type operand =
 | Int of int | Var of var | Label of label

type block =
 | Return of operand
 | Jump of label
 | Branch of operand * test * operand * label * label
 | Move of var * operand * block
 | Load of var * int * operand * block
 | Store of var * int * operand * block
 | Assign of var * primop * (operand list) * block
 | Call of var * operand * (operand list) * block

type proc = { vars : var list, prologue: label, epilogue: label, blocks : (label * block) list }
Differences with Monadic Form

• Essentially MIPS assembly with infinite number of registers

• No lambdas, so easy to translate to MIPS modulo register allocation and assignment.
 • Monadic form requires extra pass to eliminate lambdas and make closures explicit (closure conversion, lambda lifting)

• Unlike Monadic Form, variables are mutable

• Return constructor is function return, not monadic return
Let’s Revisit Optimizations

• Folding
 • \(t := 3 + 4 \) becomes \(t := 7 \)

• Constant propagation
 • \(t := 7; \ B; \ u := t + 3; \ B' \)
 becomes \(t := 7; \ B; \ u := 7 + 3; \ B' \)
 • Problem! \(B \) might assign a fresh value to \(t \)

• Copy propagation
 • \(t := u; \ B; \ v := t + 3; \ B' \)
 becomes \(t := u; \ B; \ v := u + 3; \ B' \)
 • Problem! \(B \) might assign a fresh value to \(t \) or \(u \)
Let’s Revisit Optimizations

- **Dead code elimination**
 - \(x := e; B; \text{jump } L \) becomes \(B; \text{jump } L \)
 - Problem! Block \(L \) might use \(x \)
- \(x := e_1; B_1; x := e_2; B_2 \) becomes \(B_1; x := e_2; B_2 \)
 (\(x \) not used in \(B_1 \))

- **Common sub-expression elimination**
 - \(x := y + z; B_1; w := y + z; B_2 \) becomes \(x := y + z; B_1; w := x; B_2 \)
 - Problem: \(B_1 \) might change \(x, y, \) or \(z \)
Optimization in Imperative Settings

- Optimization on a functional representation:
 - Only had to worry about variable capture.
 - Could avoid this by renaming variables so that they were unique.
 - Then: \(\text{let } x = p(v_1, \ldots, v_n) \text{ in } e \equiv e[x \mapsto p(v_1, \ldots, v_n)] \)

- Optimization in an imperative representation:
 - Have to worry about intervening updates
 - for defined variable, similar to variable capture.
 - but must also worry about free variables.
 - \(x := p(v_1, \ldots, v_n); B \equiv B[x \mapsto p(v_1, \ldots, v_n)] \) only when \(B \) doesn't modify \(x \) or modify any of the \(v_i \).

- On the other hand, graph representation makes it possible to be more precise about the scope of a variable.
Dataflow Analysis

• To handle intervening updates we will compute **analysis facts** for each **program point**
 • There is a “program point” immediately before and after each instruction

• Analysis facts are facts about variables, expressions, etc.
 • Which facts we are interested in will depend on the particular optimization or analysis we are concerned with

• Given that some facts D hold at a program point before instruction S, after S executes some facts D' will hold
 • How S transforms D into D' is called the transfer function for S

• This kind of analysis is called dataflow analysis
 • Because given a control-flow graph, we are computing facts about data/variables and propagating these facts over the control flow graph
Available Expressions

• An expression \(e \) is available at program point \(p \) if on all paths from the entry to \(p \), expression \(e \) is computed at least once, and there are no intervening assignment to \(x \) or to the free variables of \(e \).

• If \(e \) is available at \(p \), we do not need to re-compute \(e \);
 • (i.e., for common sub-expression elimination)

• How do we compute the available expressions at each program point?
Available Expressions Example

1. \emptyset
2. \emptyset
3. $\{a+b\}$
4. $\{a+b, a*b\}$
5. $\{a+b, a*b\}$
6. $\{a+b, a*b\}$
7. $\{a+b, a*b\}$
8. \emptyset
9. $\{a+b\}$
10. $\{a+b\}$
11. $\{a+b\}$
12. $\{a+b\}$

(Numbers indicate the order that the facts are computed in this example.)
More Formally

- Suppose D is a set of expressions that are available at program point p
- Suppose p is immediately before “$x := e_1; B$”
- Then the statement “$x := e_1$”
 - generates the available expression e_1, and
 - kills any available expression e_2 in D such that x is in variables(e_2)
- So the available expressions for B are:
 $$(D \cup \{e_1\}) - \{ e_2 \mid x \in \text{variables}(e_2) \}$$
Gen and Kill Sets

- Can describe this analysis by the set of available expressions that each statement generates and kills!

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x:=v;</code></td>
<td><code>{ v }</code></td>
<td>`{e</td>
</tr>
<tr>
<td><code>x:=v_1 op v_2;</code></td>
<td><code>{v_1 op v_2}</code></td>
<td>`{e</td>
</tr>
<tr>
<td><code>x:=(v+i);</code></td>
<td><code>{}</code></td>
<td>`{e</td>
</tr>
<tr>
<td><code>(v+i):=x;</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td><code>jump L;</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td><code>return v;</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td>if <code>v_1 op v_2 goto L_1 else goto L_2;</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td><code>x:=v(v_1,...v_n);</code></td>
<td><code>{}</code></td>
<td>`{e</td>
</tr>
</tbody>
</table>
Available Expressions Example

What is the effect of each statement on the facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a+b</td>
<td></td>
</tr>
<tr>
<td>y := a * b</td>
<td>a*b</td>
<td></td>
</tr>
<tr>
<td>y > a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a+1</td>
<td>a+1</td>
</tr>
</tbody>
</table>

entry

- x := a + b;
- y := a * b;

y > a

- y > a
- a := a + 1;

exit

- x := a + b
Aliasing

• We don’t track expressions involving memory (loads & stores).
 • We can tell whether variables names are equal.
 • We cannot (in general) tell whether two variables will have the same value.
• If we track \(*x\) as an available expression, and then see \(*y := e'\), don’t know whether to kill \(*x\)
 • Don’t know whether \(x\)’s value will be the same as \(y\)’s value.
Because a function call may access memory, and may have side effects, we can’t consider them to be available expressions.
Flowing Through the Graph

• How to propagate available expression facts over control flow graph?
• Given available expressions $D_{\text{in}}[L]$ that flow into block labeled L, compute $D_{\text{out}}[L]$ that flow out
 • Composition of transfer functions of statements in L's block
• For each block L, we can define:
 • $\text{succ}[L] = \text{the blocks L might jump to}$
 • $\text{pred}[L] = \text{the blocks that might jump to L}$
• We can then flow $D_{\text{out}}[L]$ to all of the blocks in $\text{succ}[L]$
 • They'll compute new D_{out}'s and flow them to their successors and so on
• How should we combine facts from predecessors?
 • e.g., if $\text{pred}[L] = \{L_1, L_2, L_3\}$, how do we combine $D_{\text{out}}[L_1], D_{\text{out}}[L_2], D_{\text{out}}[L_3]$ to get $D_{\text{in}}[L]$?
 • Union or intersection?
Algorithm Sketch

- initialize $D_{in}[\mathcal{L}]$ to the empty set.
- initialize $D_{out}[\mathcal{L}]$ to the available expressions that flow out of block \mathcal{L}, assuming $D_{in}[\mathcal{L}]$ are the set flowing in.
- loop until no change {
 - for each \mathcal{L}:
 - $ln := \cap\{D_{out}[\mathcal{L}'] | \mathcal{L}' \in pred[\mathcal{L}] \}$
 - if $ln \neq D_{in}[\mathcal{L}]$ then {
 - $D_{in}[\mathcal{L}] := ln$
 - $D_{out}[\mathcal{L}] := \text{flow } D_{in}[\mathcal{L}] \text{ through } \mathcal{L}'s \text{ block.}$
 }
 }
}
Termination and Speed

- We know the available expressions dataflow analysis will terminate!
 - Each time through the loop each $D_{\text{in}}[L]$ and $D_{\text{out}}[L]$ either stay the same or increase
 - If all $D_{\text{in}}[L]$ and $D_{\text{out}}[L]$ stay the same, we stop
 - There's a finite number of assignments in the program and finite blocks, so a finite number of times we can increase $D_{\text{in}}[L]$ and $D_{\text{out}}[L]$
- In general, if set of facts form a lattice, transfer functions monotonic, then termination guaranteed
- There are a number of tricks used to speed up the analysis:
 - Can keep a work queue that holds only those blocks that have changed
 - Pre-compute transfer function for a block (i.e., composition of transfer functions of statements in block)