CS153: Compilers
Lecture 17: Control Flow Graph and Data Flow Analysis

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Announcements

• Project 5 out
 • Due Tuesday Nov 13 (14 days)

• Project 6 out
 • Due Tuesday Nov 20 (21 days)

• Project 7 will be released today
 • Due Thursday Nov 29 (30 days)
Today

- Control Flow Graphs
 - Basic Blocks
- Dataflow Analysis
 - Available Expressions
Optimizations So Far

• We’ve look only at local optimizations
 • Limited to “pure” expressions
 • Avoid variable capture by having unique variable names
Next Few Lectures

• Imperative Representations
 • Like MIPS assembly at the instruction level.
 • except we assume an infinite # of temps
 • and abstract away details of the calling convention
 • But with a bit more structure.

• Organized into a Control-Flow graph
 • nodes: labeled basic blocks of instructions
 • single-entry, single-exit
 • i.e., no jumps, branching, or labels inside block
 • edges: jumps/branches to basic blocks

• Dataflow analysis
 • computing information to answer questions about data flowing through the graph.
Control-Flow Graphs

• Graphical representation of a program
• Edges in graph represent control flow: how execution traverses a program
• Nodes represent statements

```plaintext
x := 0;
y := 0;
while (n > 0) {
  if (n % 2 == 0) {
    x := x + n;
y := y + 1;
  } else {
    y := y + n;
x := x + 1;
  }
n := n - 1;
}print(x);
```

```plaintext
n := n - 1
```

```plaintext
print(x)
```
Basic Blocks

• We will require that nodes of a control flow graph are **basic blocks**
 • Sequences of statements such that:
 • Can be entered only at beginning of block
 • Can be exited only at end of block
 ‣ Exit by branching, by unconditional jump to another block, or by returning from function

• Basic blocks simplify representation and analysis
Basic Blocks

- Basic block: single entry, single exit

```plaintext
x := 0;
y := 0;
while (n > 0) {
    if (n % 2 = 0) {
        x := x + n;
        y := y + 1;
    }
    else {
        y := y + n;
        x := x + 1;
    }
    n := n - 1;
}
print(x);
```
type operand =
 | Int of int | Var of var | Label of label

type block =
 | Return of operand
 | Jump of label
 | Branch of operand * test * operand * label * label
 | Move of var * operand * block
 | Load of var * int * operand * block
 | Store of var * int * operand * block
 | Assign of var * primop * (operand list) * block
 | Call of var * operand * (operand list) * block

type proc = { vars : var list,
 prologue: label,
 epilogue: label,
 blocks : (label * block) list }
Differences with Monadic Form

• Essentially MIPS assembly with infinite number of registers

• No lambdas, so easy to translate to MIPS modulo register allocation and assignment.
 • Monadic form requires extra pass to eliminate lambdas and make closures explicit (closure conversion, lambda lifting)

• Unlike Monadic Form, variables are mutable

• Return constructor is function return, not monadic return
Let’s Revisit Optimizations

• **Folding**
 • $t := 3 + 4$ becomes $t := 7$

• **Constant propagation**
 • $t := 7; B; u := t + 3; B'$
 becomes $t := 7; B; u := 7 + 3; B'$
 • Problem! B might assign a fresh value to t

• **Copy propagation**
 • $t := u; B; v := t + 3; B'$
 becomes $t := u; B; v := u + 3; B'$
 • Problem! B might assign a fresh value to t or u
Let’s Revisit Optimizations

• Dead code elimination

• \(x := e; \ B; \ \text{jump L} \) becomes \(\ B; \ \text{jump L} \)
 • Problem! Block L might use \(x \)

• \(x := e_1; B_1; \ x := e_2; B_2 \) becomes \(B_1; x := e_2; B_2 \)
 (\(x \) not used in \(B_1 \))

• Common sub-expression elimination

• \(x := y + z; B_1; w := y + z; B_2 \) becomes \(x := y + z; B_1; w := x; B_2 \)
 • problem: \(B_1 \) might change \(x, y, \) or \(z \)
Optimization in Imperative Settings

- Optimization on a functional representation:
 - Only had to worry about variable capture.
 - Could avoid this by renaming variables so that they were unique.
 - Then: \(\textit{let } x = p(v_1, \ldots, v_n) \textit{ in } e = e[x \mapsto p(v_1, \ldots, v_n)] \)

- Optimization in an imperative representation:
 - Have to worry about intervening updates
 - for defined variable, similar to variable capture.
 - but must also worry about free variables.
 - \(x := p(v_1, \ldots, v_n); B == B[x \mapsto p(v_1, \ldots, v_n)] \) only when \(B \) doesn't modify \(x \) or modify any of the \(v_i \! \).

- On the other hand, graph representation makes it possible to be more precise about the scope of a variable.
Dataflow Analysis

• To handle intervening updates we will compute analysis facts for each program point
 • There is a “program point” immediately before and after each instruction
• Analysis facts are facts about variables, expressions, etc.
 • Which facts we are interested in will depend on the particular optimization or analysis we are concerned with
• Given that some facts D hold at a program point before instruction S, after S executes some facts D' will hold
 • How S transforms D into D' is called the transfer function for S
• This kind of analysis is called dataflow analysis
 • Because given a control-flow graph, we are computing facts about data/variables and propagating these facts over the control flow graph
Available Expressions

• An expression e is **available** at program point p if on all paths from the entry to p, expression e is computed at least once, and there are no intervening assignment to x or to the free variables of e

• If e is available at p, we do not need to re-compute e
 • (i.e., for common sub-expression elimination)

• How do we compute the available expressions at each program point?
Available Expressions Example

\[
\begin{align*}
x & := a + b; \\
y & := a \ast b; \\
y & > a \\
a & := a + 1; \\
x & := a + b
\end{align*}
\]
More Formally

• Suppose D is a set of expressions that are available at program point p

• Suppose p is immediately before “$x := e_1; B$”

• Then the statement “$x := e_1$”
 • generates the available expression e_1, and
 • kills any available expression e_2 in D such that x is in $\text{variables}(e_2)$

• So the available expressions for B are:
 \[(D \cup \{e_1\}) - \{ e_2 \mid x \in \text{variables}(e_2) \}\]
Gen and Kill Sets

- Can describe this analysis by the set of available expressions that each statement generates and kills!

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x:=v</code></td>
<td><code>{v}</code></td>
<td>`{e</td>
</tr>
<tr>
<td><code>x:=v_1 op v_2</code></td>
<td><code>{v_1 op v_2}</code></td>
<td>`{e</td>
</tr>
<tr>
<td><code>x:=(v+i)</code></td>
<td><code>{}</code></td>
<td>`{e</td>
</tr>
<tr>
<td><code>*(v+i):=x</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td><code>jump L</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td><code>return v</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td>if <code>v_1 op v_2 goto L_1 else goto L_2</code></td>
<td><code>{}</code></td>
<td><code>{}</code></td>
</tr>
<tr>
<td><code>x:=v(v_1, \ldots v_n)</code></td>
<td><code>{}</code></td>
<td>`{e</td>
</tr>
</tbody>
</table>

- Transfer function for stmt $S: \lambda D. (D \cup Gen_S) – Kill_S$
Available Expressions Example

- What is the effect of each statement on the facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a+b</td>
<td></td>
</tr>
<tr>
<td>y := a * b</td>
<td>a*b</td>
<td></td>
</tr>
<tr>
<td>y > a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a+1</td>
<td>a+1</td>
</tr>
</tbody>
</table>

```
x := a + b;
y := a * b;
y > a
a := a + 1;
x := a + b
```
Aliasing

• We don’t track expressions involving memory (loads & stores).
 • We can tell whether variables names are equal.
 • We cannot (in general) tell whether two variables will have the same value.
• If we track \(*x*\) as an available expression, and then see \(*y* := e’\), don’t know whether to kill \(*x*\)
 • Don’t know whether \(x\)’s value will be the same as \(y\)’s value
Function Calls

• Because a function call may access memory, and may have side effects, we can’t consider them to be available expressions
Flowing Through the Graph

• How to propagate available expression facts over control flow graph?
• Given available expressions $D_{in}[\mathcal{L}]$ that flow into block labeled \mathcal{L}, compute $D_{out}[\mathcal{L}]$ that flow out
 • Composition of transfer functions of statements in \mathcal{L}'s block
• For each block \mathcal{L}, we can define:
 • $succ[\mathcal{L}] = \text{the blocks } \mathcal{L} \text{ might jump to}$
 • $pred[\mathcal{L}] = \text{the blocks that might jump to } \mathcal{L}$
• We can then flow $D_{out}[\mathcal{L}]$ to all of the blocks in $succ[\mathcal{L}]$
 • They'll compute new D_{out}'s and flow them to their successors and so on
• How should we combine facts from predecessors?
 • e.g., if $pred[\mathcal{L}] = \{\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3\}$, how do we combine $D_{out}[\mathcal{L}_1], D_{out}[\mathcal{L}_2], D_{out}[\mathcal{L}_3]$ to get $D_{in}[\mathcal{L}]$?
 • Union or intersection?
Algorithm Sketch

• initialize $D_{in}[L]$ to the empty set.
• initialize $D_{out}[L]$ to the available expressions that flow out of block L, assuming $D_{in}[L]$ are the set flowing in.
• loop until no change {
 • for each L:
 • $In := \cap\{D_{out}[L'] \mid L' \in pred[L] \}$
 • if $In \neq D_{in}[L]$ then {
 • $D_{in}[L] := In$
 • $D_{out}[L] := \text{flow } D_{in}[L] \text{ through } L'$s block.
 • }
 • }
}
Termination and Speed

• We know the available expressions dataflow analysis will terminate!
 • Each time through the loop each $D_{\text{in}}[\mathcal{L}]$ and $D_{\text{out}}[\mathcal{L}]$ either stay the same or increase
 • If all $D_{\text{in}}[\mathcal{L}]$ and $D_{\text{out}}[\mathcal{L}]$ stay the same, we stop
 • There’s a finite number of assignments in the program and finite blocks, so a finite number of times we can increase $D_{\text{in}}[\mathcal{L}]$ and $D_{\text{out}}[\mathcal{L}]$

• In general, if set of facts form a lattice, transfer functions monotonic, then termination guaranteed

• There are a number of tricks used to speed up the analysis:
 • Can keep a work queue that holds only those blocks that have changed
 • Pre-compute transfer function for a block (i.e., composition of transfer functions of statements in block)