
CS153: Compilers
Lecture 17: Control Flow Graph  
and Data Flow Analysis

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Project 5 out
•Due Tuesday Nov 13 (14 days)

•Project 6 out
•Due Tuesday Nov 20 (21 days)

•Project 7 will be released today
•Due Thursday Nov 29 (30 days)

 2

Stephen Chong, Harvard University

Today

•Control Flow Graphs
•Basic Blocks

•Dataflow Analysis
•Available Expressions

 3

Stephen Chong, Harvard University

Optimizations So Far

•We’ve look only at local optimizations
•Limited to “pure” expressions
•Avoid variable capture by having unique variable

names

 4

Stephen Chong, Harvard University

Next Few Lectures

•Imperative Representations
•Like MIPS assembly at the instruction level.
• except we assume an infinite # of temps
• and abstract away details of the calling convention

•But with a bit more structure.

•Organized into a Control-Flow graph
•nodes: labeled basic blocks of instructions
• single-entry, single-exit

• i.e., no jumps, branching, or labels inside block

•edges: jumps/branches to basic blocks

•Dataflow analysis
•computing information to answer questions about data flowing

through the graph.
 5

Stephen Chong, Harvard University

Control-Flow Graphs

•Graphical representation of a program
•Edges in graph represent control flow:  

how execution traverses a program
•Nodes represent statements

 6

x := 0;
y := 0;
while (n > 0) {
 if (n % 2 = 0) {
 x := x + n;
 y := y + 1;
 }
 else {
 y := y + n;
 x := x + 1;
 }
 n := n - 1;
}
print(x);

x:=x+n

y:=y+1

y := 0

n > 0

n%2=0

y:=y+n

print(x)
n:=n-1

x := 0

x:=x+1

true false

true false

Stephen Chong, Harvard University

Basic Blocks

•We will require that nodes of a control flow
graph are basic blocks
•Sequences of statements such that:
•Can be entered only at beginning of block
•Can be exited only at end of block
‣ Exit by branching, by unconditional jump to another block, or by

returning from function

•Basic blocks simplify representation and analysis

 7

Stephen Chong, Harvard University

Basic Blocks

•Basic block: single entry, single exit

 8

x := 0;
y := 0;
while (n > 0) {
 if (n % 2 = 0) {
 x := x + n;
 y := y + 1;
 }
 else {
 y := y + n;
 x := x + 1;
 }
 n := n - 1;
}
print(x);

x:=x+n
y:=y+1

x := 0
y := 0

n > 0

n%2=0

y:=y+n
x:=x+1

print(x)
n:=n-1

true false

true false

Stephen Chong, Harvard University

CFG Abstract Syntax

 9

type operand =
 | Int of int | Var of var | Label of label

type block =
| Return of operand
| Jump of label
| Branch of operand * test * operand * label * label
| Move of var * operand * block
| Load of var * int * operand * block
| Store of var * int * operand * block
| Assign of var * primop * (operand list) * block
| Call of var * operand * (operand list) * block

type proc = { vars : var list,  
 prologue: label, epilogue: label,  
 blocks : (label * block) list }

Stephen Chong, Harvard University

Differences with Monadic Form

•Essentially MIPS assembly with infinite number of
registers

•No lambdas, so easy to translate to MIPS modulo
register allocation and assignment.
•Monadic form requires extra pass to eliminate lambdas

and make closures explicit (closure conversion, lambda
lifting)

•Unlike Monadic Form, variables are mutable

•Return constructor is function return, not
monadic return

 10

Stephen Chong, Harvard University

Let’s Revisit Optimizations

•Folding
•t:=3+4 becomes t:=7

•Constant propagation
•t:=7; B; u:=t+3; B’  

 becomes t := 7; B; u:=7+3; B’
•Problem! B might assign a fresh value to t

•Copy propagation
•t:=u; B; v:=t+3; B’  

 becomes t:=u; B; v:=u+3; B’

•Problem! B might assign a fresh value to t or u
 11

Stephen Chong, Harvard University

Let’s Revisit Optimizations

•Dead code elimination
•x:=e; B; jump L becomes B; jump L
• Problem! Block L might use x

•x:=e1;B1; x:=e2;B2 becomes B1;x:=e2;B2  
 (x not used in B1)

•Common sub-expression elimination
•x:=y+z;B1;w := y+z;B2 becomes
x:=y+z;B1;w:=x;B2
• problem: B1 might change x, y, or z

 12

Stephen Chong, Harvard University

Optimization in Imperative Settings

•Optimization on a functional representation:
•Only had to worry about variable capture.
•Could avoid this by renaming variables so that they were unique.

•then: let x=p(v1,…,vn) in e == e[x↦p(v1,…,vn)]

•Optimization in an imperative representation:
•Have to worry about intervening updates
• for defined variable, similar to variable capture.
• but must also worry about free variables.

•x:=p(v1,…,vn);B == B[x↦p(v1,…,vn)] only when B doesn't
modify x or modify any of the vi!

•On the other hand, graph representation makes it possible to be
more precise about the scope of a variable.

 13

Stephen Chong, Harvard University

Dataflow Analysis

•To handle intervening updates we will compute analysis facts for
each program point
•There is a “program point” immediately before and after each instruction

•Analysis facts are facts about variables, expressions, etc.
•Which facts we are interested in will depend on the particular

optimization or analysis we are concerned with

•Given that some facts D hold at a program point before
instruction S, after S executes some facts D’ will hold
•How S transforms D into D’ is called the transfer function for S

•This kind of analysis is called dataflow analysis
•Because given a control-flow graph, we are computing facts about data/

variables and propagating these facts over the control flow graph

 14

Stephen Chong, Harvard University

Available Expressions

•An expression e is available at program point p if on
all paths from the entry to p, expression e is
computed at least once, and there are no intervening
assignment to x or to the free variables of e

•If e is available at p, we do not need to re-compute
e
•(i.e., for common sub-expression elimination)

•How do we compute the available expressions at
each program point?

 15

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

Stephen Chong, Harvard University

Available Expressions Example

 16

∅

∅

{a+b}

{a+b, a*b}
{a+b, a*b}

{a+b, a*b}
{a+b, a*b}

∅

{a+b}

{a+b}

{a+b}

{a+b}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

(Numbers indicate the order that the
 facts are computed in this example.)

Stephen Chong, Harvard University

More Formally

•Suppose D is a set of expressions that are
available at program point p

•Suppose p is immediately before “x := e1; B”

•Then the statement “x:=e1”
•generates the available expression e1, and

•kills any available expression e2 in D such that x is in
variables(e2)

•So the available expressions for B are: 
 (D ∪ {e1}) – { e2 | x∈variables(e2) }

 17

Stephen Chong, Harvard University

Gen and Kill Sets

•Can describe this analysis by the set of available
expressions that each statement generates and kills!

•Transfer function for stmt S: λD. (D ∪ GenS) – KillS
 18

Stmt Gen Kill
x:=v { v } {e | x in e}

x:=v1 op v2 {v1 op v2} {e | x in e}
x:=*(v+i) {} {e | x in e}
*(v+i):=x {} {}
jump L {} {}

return v {} {}
if v1 op v2 goto L1 else goto L2 {} {}
x:=v(v1,...vn) {} {e | x in e}

Stephen Chong, Harvard University

Available Expressions Example

•What is the effect of each
statement on the facts?

 19

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

Stmt Gen Kill

x := a + b a+b

y := a * b a*b

y > a

a := a + 1 a+1
a+1
a+b
a*b

Stephen Chong, Harvard University

Aliasing

•We don’t track expressions involving memory
(loads & stores).
•We can tell whether variables names are equal.
•We cannot (in general) tell whether two variables will

have the same value.
•If we track *x as an available expression,  

and then see *y := e’, don’t know whether to kill
*x
•Don’t know whether x’s value will be the same as y’s value

 20

Stephen Chong, Harvard University

Function Calls

•Because a function call may access memory, and
may have side effects, we can’t consider them to
be available expressions

 21

Stephen Chong, Harvard University

Flowing Through the Graph

•How to propagate available expression facts over control flow graph?
•Given available expressions Din[L] that flow into block labeled L,

compute Dout[L] that flow out
•Composition of transfer functions of statements in L's block

•For each block L, we can define:
•succ[L] = the blocks L might jump to

•pred[L] = the blocks that might jump to L

•We can then flow Dout[L] to all of the blocks in succ[L]
•They'll compute new Dout's and flow them to their successors and so on

•How should we combine facts from predecessors?
•e.g., if pred[L] = {L1, L2, L3}, how do we combine Dout[L1], Dout[L2], Dout[L3]

to get Din[L] ?
•Union or intersection?

 22

Stephen Chong, Harvard University

Algorithm Sketch

•initialize Din[L] to the empty set.
•initialize Dout[L] to the available expressions that flow out of

block L, assuming Din[L] are the set flowing in.

•loop until no change {

• for each L:

• In := ⋂{Dout[L’] | L’ in pred[L] }

• if In ≠ Din[L] then {

• Din[L] := In

• Dout[L] := flow Din[L] through L's block.

• }

•}
 23

Stephen Chong, Harvard University

Termination and Speed

•We know the available expressions dataflow analysis will
terminate!
•Each time through the loop each Din[L] and Dout[L] either stay the same

or increase

•If all Din[L] and Dout[L] stay the same, we stop
•There’s a finite number of assignments in the program and finite blocks,

so a finite number of times we can increase Din[L] and Dout[L]

•In general, if set of facts form a lattice, transfer functions
monotonic, then termination guaranteed

•There are a number of tricks used to speed up the analysis:
•Can keep a work queue that holds only those blocks that have changed
•Pre-compute transfer function for a block (i.e., composition of transfer

functions of statements in block)
 24

