CS153: Compilers Lecture 17: Control Flow Graph and Data Flow Analysis

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Announcements

- Project 5 out
-Due Tuesday Nov 13 (14 days)
- Project 6 out
- Due Tuesday Nov 20 (21 days)
- Project 7 will be released today
- Due Thursday Nov 29 (30 days)

Today

- Control Flow Graphs
-Basic Blocks
- Dataflow Analysis
- Available Expressions

Optimizations So Far

- We've look only at local optimizations
-Limited to "pure" expressions
- Avoid variable capture by having unique variable names

Next Few Lectures

- Imperative Representations
- Like MIPS assembly at the instruction level.
- except we assume an infinite \# of temps
- and abstract away details of the calling convention
- But with a bit more structure.
- Organized into a Control-Flow graph
- nodes: labeled basic blocks of instructions
- single-entry, single-exit
- i.e., no jumps, branching, or labels inside block
- edges: jumps/branches to basic blocks
- Dataflow analysis
- computing information to answer questions about data flowing through the graph.

Control-Flow Graphs

- Graphical representation of a program
- Edges in graph represent control flow: how execution traverses a program
- Nodes represent statements

```
x := 0;
y := 0;
while (n > 0) {
        if (n % 2 = 0) {
            x := x + n;
            y := y + 1;
    }
    else {
        y := y + n;
        x := x + 1;
    }
    n := n - 1;
}
print(x);
```


Basic Blocks

-We will require that nodes of a control flow graph are basic blocks

- Sequences of statements such that:
- Can be entered only at beginning of block
- Can be exited only at end of block
- Exit by branching, by unconditional jump to another block, or by returning from function
- Basic blocks simplify representation and analysis

Basic Blocks

- Basic block: single entry, single exit

```
x := 0;
y := 0;
while (n>0) {
        if (n % 2 = 0) {
        x := x + n;
        y:= y + 1;
    }
        else {
        y := Y + n;
        x := x + 1;
    }
        n := n - 1;
}
print(x);
```


CFG Abstract Syntax

```
type operand =
    | Int of int | Var of var | Label of label
type block =
    Return of operand
    Jump of label
    Branch of operand * test * operand * label * label
    Move of var * operand * block
    Load of var * int * operand * block
    Store of var * int * operand * block
    Assign of var * primop * (operand list) * block
    Call of var * operand * (operand list) * block
type proc = { vars : var list,
    prologue: label, epilogue: label,
    blocks : (label * block) list }
```


Differences with Monadic Form

- Essentially MIPS assembly with infinite number of registers
- No lambdas, so easy to translate to MIPS modulo register allocation and assignment.
- Monadic form requires extra pass to eliminate lambdas and make closures explicit (closure conversion, lambda lifting)
- Unlike Monadic Form, variables are mutable
- Return constructor is function return, not monadic return

Let's Revisit Optimizations

- Folding
-t:=3+4 becomes $t:=7$
- Constant propagation
-t:=7; B; u:=t+3; B'
becomes $t:=7$; $B ; u:=7+3 ; B^{\prime}$
- Problem! B might assign a fresh value to t
- Copy propagation
-t:=u; B; v:=t+3; B'
becomes $t:=u$; $B ; \quad v:=u+3 ; ~ B '$
- Problem! B might assign a fresh value to t or u

Let's Revisit Optimizations

- Dead code elimination
-x:=e; B; jump L becomes B; jump L
- Problem! Block L might use x
- $x:=e 1 ; B_{1} ; x:=e 2 ; B_{2}$ becomes $B_{1} ; x:=e 2 ; B_{2}$ (x not used in B_{1})
- Common sub-expression elimination $\cdot x:=y+z ; B_{1} ; w:=y+z ; B_{2}$ becomes $x:=y+z ; B_{1} ; w:=x ; B_{2}$
- problem: B_{1} might change x, y, or z

Optimization in Imperative Settings

- Optimization on a functional representation:
- Only had to worry about variable capture.
-Could avoid this by renaming variables so that they were unique.
-then: let $\mathrm{x}=\mathrm{p}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$ in $\mathrm{e}=\mathrm{e}\left[\mathrm{x} \mapsto \mathrm{p}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)\right]$
- Optimization in an imperative representation:
- Have to worry about intervening updates
- for defined variable, similar to variable capture.
- but must also worry about free variables.
$\cdot \mathrm{x}:=\mathrm{p}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) ; \mathrm{B}==\mathrm{B}\left[\mathrm{x} \mapsto \mathrm{p}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)\right]$ only when B doesn't modify x or modify any of the v_{i} !
- On the other hand, graph representation makes it possible to be more precise about the scope of a variable.

Dataflow Analysis

- To handle intervening updates we will compute analysis facts for each program point
- There is a "program point" immediately before and after each instruction
- Analysis facts are facts about variables, expressions, etc.
- Which facts we are interested in will depend on the particular optimization or analysis we are concerned with
- Given that some facts D hold at a program point before instruction S, after S executes some facts D^{\prime} will hold
- How S transforms D into D^{\prime} is called the transfer function for S
- This kind of analysis is called dataflow analysis
- Because given a control-flow graph, we are computing facts about data/ variables and propagating these facts over the control flow graph

Available Expressions

- An expression e is available at program point p if on all paths from the entry to p, expression e is computed at least once, and there are no intervening assignment to x or to the free variables of e
- If e is available at p, we do not need to re-compute e
-(i.e., for common sub-expression elimination)
-How do we compute the available expressions at each program point?

Available Expressions Example

More Formally

- Suppose D is a set of expressions that are available at program point p
- Suppose p is immediately before "x := $e_{1} ; B$ "
- Then the statement " $\mathrm{x}:=\mathrm{e}_{1}$ "
- generates the available expression e_{1}, and
- kills any available expression e_{2} in D such that x is in variables (e_{2})
- So the available expressions for B are: ($D \cup\left\{\mathbf{e}_{1}\right\}$) - \{ $\mathbf{e}_{2} \mid \mathbf{x} \in$ variables $\left.\left(\mathbf{e}_{2}\right)\right\}$

Gen and Kill Sets

- Can describe this analysis by the set of available expressions that each statement generates and kills!

Stmt	Gen	Kill
$x:=v$	$\{v\}$	$\{e \mid x$ in $e\}$
$x:=v_{1}$ op v_{2}	$\left\{v_{1}\right.$ op $\left.\mathrm{v}_{2}\right\}$	$\{e \mid x$ in $e\}$
$x:=*(v+i)$	$\}$	$\{e \mid x$ in $e\}$
$*(v+i):=x$	$\}$	$\}$
jump L	$\}$	$\}$
return v	$\}$	$\}$
if v1 op v2 goto L 1 else goto L 2	$\}$	$\}$
$x:=v\left(v_{1}, \ldots v_{n}\right)$	$\}$	$\{e \mid x$ in $e\}$

- Transfer function for stmt $S: \lambda \mathrm{D}$. ($\mathrm{D} \cup$ Gens) - Kills

Available Expressions Example

-What is the effect of each statement on the facts?

Stmt	Gen	Kill
$x:=a+b$	$a+b$	
$y:=a * b$	$a * b$	
$y>a$		
$a:=a+1$	$a+1$	$a+1$ $a+b$ $a * b$

Aliasing

-We don't track expressions involving memory (loads \& stores).

- We can tell whether variables names are equal.
-We cannot (in general) tell whether two variables will have the same value.
- If we track *x as an available expression, and then see $* y:=e^{\prime}$, don't know whether to kill *x
- Don't know whether x's value will be the same as y's value

Function Calls

- Because a function call may access memory, and may have side effects, we can't consider them to be available expressions

Flowing Through the Graph

- How to propagate available expression facts over control flow graph?
- Given available expressions $D_{\text {in }}[\mathrm{L}]$ that flow into block labeled L , compute $D_{\text {out }}[L]$ that flow out
- Composition of transfer functions of statements in L's block
- For each block L, we can define:
- succ $[\mathrm{L}]=$ the blocks L might jump to
- $\operatorname{pred}[\mathrm{L}]=$ the blocks that might jump to L
- We can then flow $D_{\text {out }}[\mathrm{L}]$ to all of the blocks in $\operatorname{succ}[\mathrm{L}]$
- They'll compute new $D_{\text {out }}$'s and flow them to their successors and so on
- How should we combine facts from predecessors?
\bullet e.g., if pred $[\mathrm{L}]=\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right\}$, how do we combine $D_{\text {out }}\left[\mathrm{L}_{1}\right], D_{\text {out }}\left[\mathrm{L}_{2}\right], D_{\text {out }}\left[\mathrm{L}_{3}\right]$ to get $D_{\text {in }}[\mathrm{L}]$?
- Union or intersection?

Algorithm Sketch

- initialize $D_{\text {in }}[\mathrm{L}]$ to the empty set.
- initialize $D_{\text {out }}[\mathrm{L}]$ to the available expressions that flow out of block L , assuming $D_{\text {in }}[\mathrm{L}]$ are the set flowing in.
- loop until no change \{
- for each L:
- In $:=\cap\left\{D_{\text {out }}\left[\mathrm{L}^{\prime}\right] \mid \mathrm{L}^{\prime}\right.$ in pred[L] $\}$
- if $\ln \neq D_{\text {in }}[\mathrm{L}]$ then $\{$
- $\quad D_{\text {in }}[\mathrm{L}]:=\mathrm{In}$
- $\quad D_{\text {out }}[\mathrm{L}]:=$ flow $\mathrm{D}_{\text {in }}[\mathrm{L}]$ through L 's block.
- \}
-\}

Termination and Speed

-We know the available expressions dataflow analysis will terminate!

- Each time through the loop each $D_{\text {in }}[\mathrm{L}]$ and $D_{\text {out }}[\mathrm{L}]$ either stay the same or increase
- If all $D_{\text {in }}[\mathrm{L}]$ and $D_{\text {out }}[\mathrm{L}]$ stay the same, we stop
- There's a finite number of assignments in the program and finite blocks, so a finite number of times we can increase $D_{\text {in }}[L]$ and $D_{\text {out }}[L]$
- In general, if set of facts form a lattice, transfer functions monotonic, then termination guaranteed
- There are a number of tricks used to speed up the analysis:
- Can keep a work queue that holds only those blocks that have changed
- Pre-compute transfer function for a block (i.e., composition of transfer functions of statements in block)

