HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 17: Control Flow Graph
and Data Flow Analysis

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Announ

*Project 5 out
e Due Tuesday Nov 13 (14 days)

*Project 6 out
e Due Tuesday Nov 20 (21 days)

*Project 7 will be released today
* Due Thursday Nov 29 (30 days)

Stephen Chong, Harvard University 2

e Control Flow Graphs
*Basic Blocks

e Dataflow Analysis
* Available Expressions

Stephen Chong, Harvard University 3

Optimizati

*\We've look only at local optimizations
|imited to “pure” expressions

* Avoid variable capture by having unique variable
names

Stephen Chong, Harvard University 4

Next Few Lectures

* I[mperative Representations

e ike MIPS assembly at the instruction level.
* except we assume an infinite # of temps
- and abstract away details of the calling convention

e But with a bit more structure.

e Organized into a Control-Flow graph

enodes: labeled basic blocks of instructions
* single-entry, single-exit
*i.e., no jumps, branching, or labels inside block

eedges: jumps/branches to basic blocks

e Dataflow analysis

e computing information to answer questions about data flowing

through the graph.

Control-Flow

e Graphical representation of a program [x := o
*Edges in graph represent control flow: /
. := 0
how execution traverses a program - |
* Nodes represent statements >
X := 0;
y := 0;
while (n > 0) {
if (n % 2 = 0) {
X = X + n;
y :=y + 1; X
}
else {
y :=y + n; Y: . =
% s= x + 1: \\ ‘(Lx. x+1
}
n :=n - 1; n:= _11

print(x);
Stephen Chong, Harvard University

print(x)

Basic Blocks

*\We will require that nodes of a control flow
graph are basic blocks

e Sequences of statements such that:
» Can be entered only at beginning of block

» Can be exited only at end of block

» Exit by branching, by unconditional jump to another block, or by
returning from function

e Basic blocks simplify representation and analysis

eBasic block: single entry, single exit

X := 0;

y := 0;

while (n >
if (n % 2

o
i
P4

o]
Il

3
I

print(x);

Stephen Chong, Harvard University

Basic

0) A
= 0) {

+ n;

print (x)

CFG Abstract Syntax

type operand =
| Int of int | Var of var | Label of label

type block =

Return of operand

Jump of label

Branch of operand * test * operand * label * label
Move of var * operand * block

Load of var * int * operand * block

Store of var * int * operand * block

Assign of var * primop * (operand list) * block
Call of var * operand * (operand list) * block

type proc = { vars : var 1list,
prologue: label, epilogue: label,
blocks : (label * block) list }

Differences with Monadic Form

e Essentially MIPS assembly with infinite number of
registers

* No lambdas, so easy to translate to MIPS modulo
register allocation and assignment.

* Monadic form requires extra pass to eliminate lambdas
and make closures explicit (closure conversion, lambda

lifting)
e Unlike Monadic Form, variables are mutable

eReturn constructor is function return, not
monadic return

Let’s Revisit Optimizations

Folding

ot:=3+4 becomes t:=7

* Constant propagation

et:=7:; B; u:=t+3; B’
becomes t := 7; B:; u:=7+3; B’

*Problem! B might assign a fresh value to t
* Copy propagation

et:=u; B; v:=t+3; B’
becomes t:=u; B; v:=u+3; B’

e Problem! B might assign a fresh value to t or u

Let’s Revisit Optimizations

e Dead code elimination
ex:=e; B; jump L becomes B; jump L
* Problem! Block L. might use x
ex:=el;B;; x:=e2;:;B, becomes Bi;x:=e2:B;
(x not used in B1)

e Common sub-expression elimination

ex:=y+z;Bi;w := y+z;B, becomes
Xe=y+z;Bi1;w:=X; B>

* problem: B1 might change x, y, or z

Optimization in Imperative Settings

e Optimization on a functional representation:

*Only had to worry about variable capture.

e Could avoid this by renaming variables so that they were unique.

°then: let xX=p(Vi,..,Van) 1in e ==e[X~>P(Vi,w,Vn)]

O

ptimization in an imperative representation:

ave to worry about intervening updates
- for defined variable, similar to variable capture.
* but must also worry about free variables.

*X:=p(V1i,.,Vn);B == B[x~pP(Vi,..,Vn)] only when B doesn't
modify x or modify any of the v;!

*On the other hand, graph representation makes it possible to be

more precise about the scope of a variable.

Datatlow Analysis

e To handle intervening updates we will compute analysis facts for
each program point
e There is a “program point” immediately before and after each instruction
e Analysis facts are facts about variables, expressions, etc.

e Which facts we are interested in will depend on the particular
optimization or analysis we are concerned with

* Given that some facts D hold at a program point before
instruction S, after S executes some facts D’ will hold

e How S transforms D into D’ is called the transfer function for S

* This kind of analysis is called dataflow analysis

e Because given a control-flow graph, we are computing facts about data/
variables and propagating these facts over the control flow graph

Available Expressions

* An expression e is available at program point p if on
all paths from the entry to p, expression e is
computed at least once, and there are no intervening
assignment to x or to the free variables of e

*|f e is available at p, we do not need to re-compute
e
*(i.e., for common sub-expression elimination)

e How do we compute the available expressions at
each program point?

Available Expr

X := a + b;
3.{atb} >
y := a * b;
4. {a+b, a*b} > l
5. {a+b, a*b} > < {a+b} 10.
y > a l
6. {a+b, a*b) > l < {atb} 11.
7. {at+b, a*Db} S latb} 12.
3 %) >
X = a + b

9. {atb} > (Numbers indicate the order that the
facts are computed in this example.)

Stephen Chong, Harvard University 16

More Formally

e Suppose D is a set of expressions that are
available at program point p

*Suppose p is immediately before “x := e;; B”

* Then the statement “x:=e;”
e generates the available expression e1, and

ekills any available expression ez in D such that x is in
variables(ez)

*So the available expressions for B are:
(D u {e1}) — { ez | xevariables(e2) }

Gen and Kill Sets

e Can describe this analysis by the set of available

expressions that each statemen

t gen

erates and kills!

Stmt

Gen

Kill

Xe=V

{ v}

{e | XIn e}

Xe=V1 OpP V2

{vi op V2l

{e | XIn e}

Xe=%*(v+l)

U

{e | XIn e}

*(v+1l) 1 =X

U

U

jump L

U

U

return v

U

U

if vl op v2 goto L1 else goto L2

U

U

X:=V(V1, o o

«Vn)

U

{e | xin e}

e Transfer function for stmt S: AD.

(D u Geng) — Kills

Available Expressi

statement on the facts?

e\What is the effect of each

Stmt Gen Kill

X s = a -+ b a+b

a
y s = a * b a*bp l
y > a
y > a /‘ l\
a ;

a+1
a : = a + 1 a+1 a+b
a*b .=

Stephen Chong, Harvard University 19

Aliasing

*We don't track expressions involving memory
(loads & stores).

*\We can tell whether variables names are equal.

*\We cannot (in general) tell whether two variables will

nave the same value.

f we track *x as an available expression,

and then see *y := e’, don’t know whether to kill
*X

* Don’t know whether x’s value will be the same as y’s value

Functi

e Because a function call may access memory, and
may have side effects, we can’t consider them to
be available expressions

Stephen Chong, Harvard University 21

Flowing Through the Graph

e How to propagate available expression facts over control flow graph?
*Given available expressions Diy[L] that flow into block labeled L,
compute Dou[L] that flow out

* Composition of transfer functions of statements in L's block

*For each block L, we can define:

*succ|L] = the blocks I might jump to

*pred|[L] = the blocks that might jump to L
*We can then flow Dou[L] to all of the blocks in succ[L]

e They'll compute new Dout's and flow them to their successors and so on
e How should we combine facts from predecessors?

°e.g., if pred[L] = {L1, L, L3}, how do we combine Dout[L1], DoutlL2], Dout[L3]
to get Din[L] ¢

e Union or intersection?

Algorithm S

*initialize Din[L] to the empty set.

einitialize Dow[L] to the available expressions that flow out of
block L, assuming Dis[L] are the set flowing in.

*|oop until no change {

e for each L:

e In:=nN{Dow[L’] | L" in pred[L] }

o if In+# Din[L] then {

o Din[L] :=In

° Dout[L] := flow Din[L] through L's block.
° }

°]

Stephen Chong, Harvard University 23

Termination and Speed

*\We know the available expressions dataflow analysis will
terminate!

e Each time through the loop each Din[L] and Dow[L] either stay the same
or Increase

oIf all Din[L] and Dout[L] stay the same, we stop

e There’s a finite number of assignments in the program and finite blocks,
so a finite number of times we can increase Din[L] and Dout|L]

|n general, if set of facts form a lattice, transfer functions
monotonic, then termination guaranteed

e There are a number of tricks used to speed up the analysis:

e Can keep a work queue that holds only those blocks that have changed

* Pre-compute transfer function for a block (i.e., composition of transfer
functions of statements in block)

