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Pre-class Puzzle

•For each of these Control Flow Graphs (CFGs), what is a C program that 
corresponds to it?
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Announcements

•Project 5 out 
•Due Tuesday Nov 13 (12 days) 

•Project 6 out 
•Due Tuesday Nov 20 (19 days) 

•Project 7 out 
•Due Thursday Nov 29 (28 days)
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Today

•More dataflow analyses 
•Available expressions 
•Reaching definitions 
•Liveness 

•Loop optimization 
•Examples 
•Identifying loops 
•Dominators
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Dataflow Analysis

•Last class we saw dataflow analysis for available 
expressions 

•An expression e is available at program point p if 
on all paths from the entry to p, expression e is 
computed at least once, and there are no 
intervening assignment to the free variables of e 
[NOTE: last lecture’s definition corrected] 

•Defined available expression analysis using gen 
and kill sets; combined dataflow facts at merge 
points by intersection
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Available Expressions Analysis

•Din[L] = ⋂{Dout[L’] | L’ in pred[L] } 

•Transfer function for stmt S: λD. (D ∪ GenS) – 
KillS
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Stmt Gen Kill
x:=v { v } {e | x in e}

x:=v1 op v2 {v1 op v2} {e | x in e}
x:=*(v+i) {} {e | x in e}
*(v+i):=x {} {}
jump L {} {}

return v {} {}
if v1 op v2 goto L1 else goto L2 {} {}
x:=v(v1,...vn) {} {e | x in e}
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Reaching Definitions

•A definition x:=e  reaches a program point p if 
there is some path from the assignment to p that 
contains no other assignment to x 

•Reaching definitions useful in several 
optimizations, including constant propagation 

•Can also define reaching definitions analysis 
using gen and kill sets; combine dataflow facts at 
merge points by union
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Reaching Definitions Analysis

•Assign a unique id to each definition 

•Define defs(x) to be the set of all definitions of 
variable x

•Din[L] = ∪{Dout[L’] | L’ in pred[L] } 

•Transfer function for stmt S: λD. (D ∪ GenS) – KillS
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Stmt Gen Kill
d:x:=v { d } defs(x)–{ d }

d:x:=v1 op v2 { d } defs(x)–{ d }
everything else ∅ ∅
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Liveness

•Variable x is live at program point p is there is a 
path from p to a use of variable x 

•Liveness useful in dead code elimination and 
register allocation 

•Can also define using gen-kill sets 
•However, we use a backward dataflow analysis 

•i.e., instead of flowing facts forwards over statement 
(computing Dout from Din) we flow facts backwards 
over statements (compute Din from Dout)
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Liveness Analysis

•I.e., any use of a variable generates liveness, any definition kills liveness 
•Dout[L] = ∪{Din[L’] | L’ in succ[L] } 

•Transfer function for stmt S: λD. (D ∪ GenS) – KillS
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Stmt Gen Kill
x:=v { v | if v is variable} { x }

x:=v1 op v2 {vi|i∈1,2, vi is var} { x }
x:=*(v+i) { v | if v is variable} { x }
*(v+i):=x { x } ∪ { v | if v is variable} {}
jump L {} {}

return v { v | if v is variable} {}
if v1 op v2 goto L1 else goto L2 {vi|i∈1,2, vi is var} {}
x:=v0(v1,...vn) {vi|i∈0..n, vi is var} { x }
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Liveness Example
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x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b exit

entry

return x
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Very Busy Expressions

•An expression v1 op v2 is very busy at program 
point p if on every path from p, expression v1 
op v2 is evaluated before the value of either v1 
or v2 is changed 

•Optimization 
•Can hoist very busy expression computation 

•What kind of problem? 
•Forward or backward? 
•May or must?
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Space of data flow analyses

• Most dataflow analyses can be categorized in this way 
• i.e., forward or backward, may or must 

•A few don’t fit, need bidrectional flow 

• Many dataflow analyses can be expressed as gen/kill 
analyses
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May Must

Forward Reaching 
definitions

Available 
expressions

Backward Live variables Very busy 
expressions
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Loop Optimizations

•Vast majority of time spent in loops 
•So we want techniques to improve loops! 

•Loop invariant removal 
•Induction variable elimination 
•Loop unrolling 
•Loop fusion 
•Loop fission 
•Loop peeling 
•Loop interchange 
•Loop tiling 
•Loop parallelization 
•Software pipelining
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Example 1: Invariant Removal
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L0:  t := 0

     t := a + b
L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t
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Example 1: Invariant Removal
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L0:  t := 0
     t := a + b

L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t
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Example 2: Induction Variable
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L0:  i := 0 
     s := 0 
     jump L2 

s=0;
for (i=0; i < 100; i++) 
  s += a[i];

L1:  t1 := i*4       
     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1
L2:  if i < 100 goto L1 else goto L3
L3:  ...
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is always equal 
to i*4 !

     t1 := i*4       
     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is always equal 
to i*4 !

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t2 is always equal 
to a+t1 == a+i*4 !

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t2 is always equal 
to a+t1 == a+i*4 !

     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
     t2 := a

     t2 := t2+4
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is no 
longer used!

     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
     t2 := a

     t2 := t2+4
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Example 2: Induction Variable
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L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

     t3 := *t2
     s  := s + t3
     i  := i+1

     jump L2 
     t2 := a

     t2 := t2+4
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Example 2: Induction Variable
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     i := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

i is now used just to 
count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400
    i  := i+1

     jump L2 
     t2 := a

     t2 := t2+4

     s := 0
L0:

     t3 := *t2
     s  := s + t3
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Example 2: Induction Variable
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     i := 0

L1:

L2:  if t2 < t5 goto L1 else goto L3
L3:  ...

    i  := i+1

     t2 := a

     t2 := t2+4

     s := 0
L0:

     t3 := *t2
     s  := s + t3

     jump L2 
     t5 := t2 + 400 i is now used just to 

count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400
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Example 2: Induction Variable
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L1:

L2:  if t2 < t5 goto L1 else goto L3
L3:  ...

     t2 := a

     t2 := t2+4

     s := 0L0:

     t3 := *t2
     s  := s + t3

     jump L2 
     t5 := t2 + 400

i is now used just to 
count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400
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Loop Analysis

•How do we identify loops? 
•What is a loop? 

•Can't just “look” at graphs 
•We're going to assume some additional structure 

•Definition: a loop is a subset S of nodes where: 
•S is strongly connected: 
• For any two nodes in S, there is a path from one to the 
other using only nodes in S 

•There is a distinguished header node h∈S such that 
there is no edge from a node outside S to S\{h}
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Examples
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Examples
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Examples
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Non-example

•Consider the following: 

•a can’t be header 
•No path from b to a or c to a 

•b can’t be header 
•Has outside edge from a 

•c can’t be header 
•Has outside edge from a 

•So no loop... 
•But clearly a cycle!

 32
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Reducible Flow Graphs

•So why did we define loops this way? 
•Loop header gives us a “handle” for the loop 

•e.g., a good spot for hoisting invariant statements 

•Structured control-flow only produces reducible graphs 
•a graph where all cycles are loops according to our definition. 
•Java: only reducible graphs 
•C/C++: goto can produce irreducible graph 

•Many analyses & loop optimizations depend upon 
having reducible graphs
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Finding Loops

•Definition: node d dominates node n if every path 
from the start node to n must go through d 

•Definition: an edge from n to a dominator d is 
called a back-edge 

•Definition:  a loop of a back edge n→d is the set 
of nodes x such that d dominates x and there is a 
path from x to n not including d 

•So to find loops, we figure out dominators, and 
identify back edges
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Example

•a dominates a,b,c,d,e,f,g,h 
•b dominates b,c,d,e,f,g,h 
•c dominates c,e 
•d dominates d 
•e dominates e 
•f dominates  f,g,h 
•g dominates g,h 
•h dominates h 
•back-edges? 

•g→b 

•h→a 

•loops?
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Calculating Dominators

•D[n] :  the set of nodes that dominate n 
•D[n] = {n} ∪ (D[p1] ∩ D[p2] ∩ … ∩ D[pm]) 

           where pred[n] = {p1,p2,…,pm} 
•It's pretty easy to solve this equation: 

•start off assuming D[n] is all nodes.  
• except for the start node (which is dominated only by itself) 

•iteratively update D[n] based on predecessors until you 
reach a fixed point
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Representing Dominators

•Don’t actually need to keep set of all dominators 
for each node 

•Instead, construct a dominator tree 
•Insight: if both d and e dominate n, then either d 

dominates e or vice versa 
•So that means that node n has a “closest” or 

immediate dominator
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Example
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a

b

c d

fe

g

h

CFG Immediate 
Dominator Tree

a

b

c

fe

d

g

h

a dominates a,b,c,d,e,f,g,h 
b dominates b,c,d,e,f,g,h 
c dominates c,e 
d dominates d 
e dominates e 
f dominates  f,g,h 
g dominates g,h 
h dominates h

a dominated by a 
b dominated by b,a 
c dominated by c,b,a 
d dominated by d,b,a 
e dominated by e,c,b,a 
f dominated by f,b,a 
g dominated by g,f,b,a 
h dominated by h,g,f,b,a
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Nested Loops

•If loops A and B have distinct headers and all 
nodes in B are in A (i.e., B⊆A), then we say B is 
nested within A 

•An inner loop is a nested loop that doesn’t 
contain any other loops 

•We usually concentrate our attention on nested 
loops first (since we spend most time in them)
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