# CS153: Compilers <br> Lecture 18: Loop Optimization I 

## Stephen Chong

https://www.seas.harvard.edu/courses/cs153

## Pre-class Puzzle

- For each of these Control Flow Graphs (CFGs), what is a C program that corresponds to it?



## Announcements

- Project 5 out
- Due Tuesday Nov 13 (12 days)
- Project 6 out
- Due Tuesday Nov 20 (19 days)
- Project 7 out
-Due Thursday Nov 29 (28 days)


## Today

- More dataflow analyses
- Available expressions
- Reaching definitions
-Liveness
- Loop optimization
- Examples
- Identifying loops
- Dominators


## Dataflow Analysis

- Last class we saw dataflow analysis for available expressions
- An expression e is available at program point $p$ if on all paths from the entry to $p$, expression e is computed at least once, and there are no intervening assignment to the free variables of e [NOTE: last lecture's definition corrected]
- Defined available expression analysis using gen and kill sets; combined dataflow facts at merge points by intersection


## Available Expressions Analysis

| Stmt | Gen | Kill |
| :---: | :---: | :---: |
| $x:=v$ | $\{v\}$ | $\{e \mid x$ in $e\}$ |
| $x:=v_{1}$ op $v_{2}$ | $\left\{v_{1}\right.$ op $\left.\mathrm{v}_{2}\right\}$ | $\{e \mid x$ in $e\}$ |
| $x:=*(v+i)$ | $\}$ | $\{e \mid x$ in $e\}$ |
| $*(v+i):=x$ | $\}$ | $\}$ |
| jump L | $\}$ | $\}$ |
| return $v$ | $\}$ | $\}$ |
| if v1 op v2 goto L1 else goto L2 | $\}$ | $\}$ |
| $x:=v\left(v_{1}, \ldots v_{n}\right)$ | $\}$ | $\{e \mid x$ in $e\}$ |

- $D_{\text {in }}[\mathrm{L}]=\cap\left\{D_{\text {out }}\left[\mathrm{L}^{\prime}\right] \mid \mathrm{L}^{\prime}\right.$ in pred $\left.[\mathrm{L}]\right\}$
- Transfer function for stmt $S$ : $\lambda \mathrm{D}$. ( $\mathrm{D} \cup$ Gens) Kills $_{S}$


## Reaching Definitions

- A definition $\mathrm{x}:=\mathrm{e}$ reaches a program point $p$ if there is some path from the assignment to $p$ that contains no other assignment to x
- Reaching definitions useful in several optimizations, including constant propagation
- Can also define reaching definitions analysis using gen and kill sets; combine dataflow facts at merge points by union


## Reaching Definitions Analysis

- Assign a unique id to each definition
- Define defs $(\mathbf{x})$ to be the set of all definitions of variable x

| Stmt | Gen | Kill |
| :---: | :---: | :---: |
| $\mathrm{d}: \mathrm{x}:=\mathrm{v}$ | $\{\mathrm{d}\}$ | $\operatorname{defs}(\mathrm{x})-\{\mathrm{d}\}$ |
| $\mathrm{d}: \mathrm{x}:=\mathrm{v}_{1}$ op $\mathrm{v}_{2}$ | $\{\mathrm{~d}\}$ | $\operatorname{def}(\mathrm{x})-\{\mathrm{d}\}$ |
| everything else | $\varnothing$ | $\varnothing$ |

- $D_{\text {in }}[\mathrm{L}]=\cup\left\{D_{\text {out }}\left[\mathrm{L}^{\prime}\right] \mid \mathrm{L}^{\prime}\right.$ in $\left.\operatorname{pred}[\mathrm{L}]\right\}$
- Transfer function for stmt $S: \lambda \mathrm{D}$. (D u Gens) - Kills


## Liveness

- Variable x is live at program point $p$ is there is a path from $p$ to a use of variable $x$
-Liveness useful in dead code elimination and register allocation
- Can also define using gen-kill sets
- However, we use a backward dataflow analysis
-i.e., instead of flowing facts forwards over statement (computing $D_{\text {out }}$ from $D_{\text {in }}$ ) we flow facts backwards over statements (compute $D_{\text {in }}$ from $D_{\text {out }}$ )


## Liveness Analysis

| Stmt | Gen | Kill |
| :---: | :---: | :---: |
| $\mathrm{x}:=\mathrm{v}$ | $\{\mathrm{v} \mid$ if v is variable $\}$ | $\{\mathrm{x}\}$ |
| $\mathrm{x}:=\mathrm{v}_{1}$ op $\mathrm{v}_{2}$ | $\left\{\mathrm{v}_{i} \mid i \in 1,2, \mathrm{v}_{i}\right.$ is var $\}$ | $\{\mathrm{x}\}$ |
| $\mathrm{x}:=*(\mathrm{v}+\mathrm{i})$ | $\{\mathrm{v} \mid$ if v is variable $\}$ | $\{\mathrm{x}\}$ |
| $*(\mathrm{v}+\mathrm{i}):=\mathrm{x}$ | $\{\mathrm{x}\} \cup\{\mathrm{v} \mid$ if v is variable $\}$ | $\}$ |
| jump L | $\}$ | $\}$ |
| return v | $\{\mathrm{v} \mid$ if v is variable $\}$ | $\}$ |
| if v1 op v2 goto L 1 else goto $\mathrm{I2} 2$ | $\left\{\mathrm{v}_{i} \mid i \in 1,2, \mathrm{v}_{i}\right.$ is var $\}$ | $\}$ |
| $\mathrm{x}:=\mathrm{v}_{0}\left(\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}\right)$ | $\left\{\mathrm{v}_{i} \mid i \in 0 . . \mathrm{n}, \mathrm{v}_{i}\right.$ is var $\}$ | $\{\mathrm{x}\}$ |

- I.e., any use of a variable generates liveness, any definition kills liveness
- $D_{\text {out }}[\mathrm{L}]=\cup\left\{D_{\text {in }}\left[\mathrm{L}^{\prime}\right] \mid \mathrm{L}^{\prime}\right.$ in $\left.\operatorname{succ}[\mathrm{L}]\right\}$
- Transfer function for stmt $S$ : $\lambda \mathrm{D}$. (D $\cup$ Gens) - Kills


## Liveness Example



## Very Busy Expressions

- An expression $\mathrm{v}_{1}$ op $\mathrm{v}_{2}$ is very busy at program point $p$ if on every path from $p$, expression $\mathrm{v}_{1}$ op $v_{2}$ is evaluated before the value of either $v_{1}$ or $\mathrm{v}_{2}$ is changed
- Optimization
-Can hoist very busy expression computation
-What kind of problem?
$\bullet$-Forward or backward?
-May or must?


## Space of data flow analyses

|  | May | Must |
| :---: | :---: | :---: |
| Forward | Reaching <br> definitions | Available <br> expressions |
| Backward | Live variables | Very busy <br> expressions |

- Most dataflow analyses can be categorized in this way
- i.e., forward or backward, may or must
- A few don't fit, need bidrectional flow
- Many dataflow analyses can be expressed as gen/kill analyses


## Loop Optimizations

- Vast majority of time spent in loops
- So we want techniques to improve loops!
- Loop invariant removal
- Induction variable elimination
- Loop unrolling
- Loop fusion
- Loop fission
- Loop peeling
- Loop interchange
- Loop tiling
- Loop parallelization
- Software pipelining


## Example 1: Invariant Removal

L0: $\quad t:=0$

L1: $\begin{aligned} & i \quad:=i+1 \\ & t \quad:=a+b \\ & * i:=t\end{aligned}$
if i<N goto L1 else L2

L2: $x:=t$

## Example 1: Invariant Removal

$$
\begin{aligned}
& \text { L0: } \quad t:=0 \\
& \mathrm{t}:=\mathrm{a}+\mathrm{b} \\
& \text { L1: i := i + } 1 \\
& \text { *i := t } \\
& \text { if i<N goto L1 else L2 } \\
& \text { L2: } x \text { : }=t
\end{aligned}
$$

## Example 2: Induction Variable

$$
\begin{aligned}
& \mathrm{L} 0: \mathrm{i}:=0 \quad s=0 \text {; } \\
& \mathrm{s}:=0 \\
& \text { jump L2 } \\
& \text { for (i=0; } i<100 ; i++) \\
& s+=a[i] ; \\
& \text { L1: t1 : = i*4 } \\
& \text { 七2 :=a+t1 } \\
& \text { t3 : = * t } 2 \\
& s \quad:=s+t 3 \\
& i \quad:=i+1 \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

## Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& \text { L1: } \begin{array}{l}
\text { jump L2 } \\
\begin{array}{|l|}
\text { t1 }:=i * 4 \\
\text { t2 }:=a+t 1
\end{array} \\
\hline
\end{array} \\
& \text { 七3 : = * } 42 \\
& \mathrm{~s}:=\mathrm{s}+\mathrm{t} 3 \\
& i \quad:=i+1 \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

## Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& \begin{array}{|l|}
\hline \text { t1 }:=0 \\
\text { jump L2 }
\end{array} \\
& \text { t1 is always equal } \\
& \text { to } \mathbf{i * 4 !} \\
& \text { L1: t2 :=a+t1 } \\
& \text { t3 }:=* \text { t2 } \\
& \mathrm{s}:=\mathrm{s}+\mathrm{t} 3 \\
& \text { i }:=i+1 \\
& \text { t1 }:=t 1+4 \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

## Example 2: Induction Variable

$$
\begin{array}{ll}
\text { L0 }: & i \quad=0 \\
& s:=0 \\
& \text { t1 }:=0 \\
& \text { jump L2 } \\
\text { L1: } & \text { t2 }:=a+t 1 \\
& \text { t3 }:=\star t 2 \\
& \text { s }:=s+t 3 \\
& \text { i }:=i+1 \\
& \text { t1 }:=\text { t1+4 } \\
\text { L2: } & \text { if } i<100 \text { goto L1 else goto L3 } \\
\text { L3: } & \cdots .
\end{array}
$$

## Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& \text { t1 :=0 } \\
& \text { jump L2 } \\
& \text { L1: } \begin{aligned}
\text { t2 } & :=a+t 1 \\
\text { t3 } & :=* t 2 \\
s & :=s+t 3
\end{aligned} \\
& i \quad:=i+1 \\
& \text { 七1 := t1+4 }
\end{aligned}
$$

L2: if i < 100 goto L1 else goto L3 L3:

## Example 2：Induction Variable

$$
\begin{aligned}
& \text { L0: i }:=0 \\
& \mathrm{~s}:=0 \\
& t 1:=0 \\
& \text { t2 }:=a \\
& \text { jump L2 } \\
& \text { L1: t3:=*t2 } \\
& \mathrm{s}:=\mathrm{s}+\mathrm{t} 3 \\
& \text { i }:=i+1 \\
& \text { t2 }:=t 2+4 \\
& \text { 七1 : = 七1+4 }
\end{aligned}
$$

L2：if i＜ 100 goto L1 else goto L3 L3：

## Example 2: Induction Variable

$$
\begin{aligned}
& \text { L0: i := } 0 \\
& \text { s := } 0 \\
& \text { t1 }:=0 \\
& \text { t2 := a } \\
& \text { jump L2 } \\
& \text { L1: t3 : = *t2 } \\
& \text { s : }=s+t 3 \\
& \text { i }:=i+1 \\
& \text { t2 := t2+4 } \\
& \text { t1 := t1+4 } \\
& \text { L2: if i < } 100 \text { goto L1 else goto L3 } \\
& \text { L3: }
\end{aligned}
$$

## Example 2: Induction Variable

$$
\begin{array}{ll}
\text { Lo }: & \text { i }:=0 \\
& s:=0 \\
& \text { th }:=a \\
& \text { jump } \mathrm{L} 2 \\
\text { LI }: & \text { th }:=* \text { th } \\
& s:=s+t 3 \\
& \text { i }:=i+1 \\
& \text { th }:=t 2+4
\end{array}
$$

L2: if i < 100 goto L1 else goto L3 Le:

## Example 2: Induction Variable

$$
\begin{array}{ll}
\mathrm{L} 0: & \text { i }:=0 \\
& \mathrm{~s}:=0 \\
& \mathrm{t} 2:=\mathrm{a} \\
& \text { jump } \mathrm{L} 2 \\
\mathrm{~L} 1: & \mathrm{t} 3:=* \mathrm{t} 2 \\
& \mathrm{~s}:=\mathrm{s}+\mathrm{t} 3 \\
\mathrm{i} \quad:=\mathrm{i}+1 \\
& \text { th }:=\mathrm{t} 2+4
\end{array}
$$

$i$ is now used just to count 100 iterations.
But $\mathrm{t} 2=4 * \mathrm{i}+\mathrm{a}$

$$
\begin{gathered}
\text { so } i<100 \\
\text { when } \\
\text { tx }<a+400
\end{gathered}
$$

L2: if i < 100 goto L1 else goto L3 Le:

## Example 2: Induction Variable

$$
\begin{array}{ll}
\text { Lo }: & i \quad:=0 \\
& s:=0 \\
& \text { t2 }:=a \\
& \text { ts }:=\mathrm{t} 2+400 \\
\text { jump L2 } \\
\text { LI }: & \text { th }:=* \text { th } \\
& s \quad:=s+t 3 \\
& i \quad:=i+1 \\
& \text { th }:=t 2+4
\end{array}
$$

$i$ is now used just to count 100 iterations.
But $\mathrm{t} 2=4 * \mathrm{i}+\mathrm{a}$

$$
\begin{gathered}
\text { so } i<100 \\
\text { when } \\
\text { tx }<a+400
\end{gathered}
$$

L2: if th < ty goto L1 else goto L3 Le:

## Example 2: Induction Variable

$$
\begin{array}{ll}
\mathrm{L} 0: & \mathrm{s}:=0 \\
\mathrm{t} 2 & :=\mathrm{a} \\
\mathrm{t} 5 & :=\mathrm{t} 2+400 \\
& \text { jump } \mathrm{L} 2
\end{array}
$$

$i$ is now used just to count 100 iterations.

$$
\mathrm{L} 1: \quad \mathrm{t} 3:=\text { *ta }
$$

But $\mathrm{t} 2=4 * \mathrm{i}+\mathrm{a}$

$$
s:=s+t 3
$$

$$
\text { tx }:=t 2+4
$$

$$
\begin{gathered}
\text { so } i<100 \\
\text { when } \\
\text { tx }<a+400
\end{gathered}
$$

L2: if th < ts goto L1 else goto L3 Le:

## Loop Analysis

-How do we identify loops?
-What is a loop?

- Can't just "look" at graphs
- We're going to assume some additional structure
- Definition: a loop is a subset $S$ of nodes where:
- $S$ is strongly connected:
- For any two nodes in $S$, there is a path from one to the other using only nodes in $S$
-There is a distinguished header node $h \in S$ such that there is no edge from a node outside $S$ to $S \backslash\{h\}$


## Examples



## Examples



## Examples



## Non-example

- Consider the following:
- a can't be header

- No path from b to a or c to a -b can't be header
- Has outside edge from a
- c can't be header
- Has outside edge from a
- So no loop...
- But clearly a cycle!


## Reducible Flow Graphs

- So why did we define loops this way?
- Loop header gives us a "handle" for the loop
-e.g., a good spot for hoisting invariant statements
- Structured control-flow only produces reducible graphs
- a graph where all cycles are loops according to our definition.
- Java: only reducible graphs
- C/C++: goto can produce irreducible graph
- Many analyses \& loop optimizations depend upon having reducible graphs


## Finding Loops

- Definition: node $d$ dominates node $n$ if every path from the start node to $n$ must go through $d$
- Definition: an edge from $n$ to a dominator $d$ is called a back-edge
- Definition: a loop of a back edge $n \rightarrow d$ is the set of nodes $x$ such that d dominates $x$ and there is a path from $x$ to $n$ not including $d$
- So to find loops, we figure out dominators, and identify back edges


## Example

- a dominates a,b,c,d,e,f,g,h
- b dominates b,c,d,e,f,g,h
- c dominates c,e
- d dominates d
-e dominates e
- $f$ dominates $\mathrm{f}, \mathrm{g}, \mathrm{h}$
- g dominates g,h
- h dominates h
-back-edges?

$$
\begin{aligned}
& \bullet g \rightarrow b \\
& \bullet h \rightarrow a
\end{aligned}
$$

- loops?



## Calculating Dominators

- $D[n]$ : the set of nodes that dominate $n$
$-D[n]=\{n\} \cup\left(D\left[p_{1}\right] \cap D\left[p_{2}\right] \cap \ldots \cap D\left[p_{m}\right]\right)$ where $\operatorname{pred}[n]=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$
- It's pretty easy to solve this equation:
- start off assuming $D[n]$ is all nodes.
- except for the start node (which is dominated only by itself)
- iteratively update $D[n]$ based on predecessors until you reach a fixed point


## Representing Dominators

- Don't actually need to keep set of all dominators for each node
- Instead, construct a dominator tree
- Insight: if both $d$ and e dominate $n$, then either $d$ dominates e or vice versa
- So that means that node $n$ has a "closest" or immediate dominator


## Example


a dominates $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ b dominates b,c,d,e,f,g,h c dominates c,e d dominates d e dominates e f dominates f,g,h g dominates g,h $h$ dominates $h$
a dominated by a b dominated by b,a c dominated by $\mathrm{c}, \mathrm{b}, \mathrm{a}$ d dominated by d,b,a e dominated by e,c,b,a f dominated by f,b,a g dominated by $\mathrm{g}, \mathrm{f}, \mathrm{b}, \mathrm{a}$ h dominated by h,g,f,b,a

Immediate
Dominator Tree

```

```


## Nested Loops

- If loops $A$ and $B$ have distinct headers and all nodes in $B$ are in $A$ (i.e., $B \subseteq A$ ), then we say $B$ is nested within $A$
- An inner loop is a nested loop that doesn't contain any other loops
-We usually concentrate our attention on nested loops first (since we spend most time in them)

