

## CS153: Compilers Lecture 18: Loop Optimization I

#### Stephen Chong https://www.seas.harvard.edu/courses/cs153

#### Pre-class Puzzle

• For each of these Control Flow Graphs (CFGs), what is a C program that corresponds to it?









#### Announcements

- Project 5 out
  - Due Tuesday Nov 13 (12 days)
- Project 6 out
  - Due Tuesday Nov 20 (19 days)
- Project 7 out
  - Due Thursday Nov 29 (28 days)

# Today

- More dataflow analyses
  - Available expressions
  - Reaching definitions
  - Liveness
- Loop optimization
  - Examples
  - Identifying loops
    - Dominators

## Dataflow Analysis

- Last class we saw dataflow analysis for available expressions
- An expression e is available at program point p if on all paths from the entry to p, expression e is computed at least once, and there are no intervening assignment to the free variables of e [NOTE: last lecture's definition corrected]
- Defined available expression analysis using gen and kill sets; combined dataflow facts at merge points by intersection

## Available Expressions Analysis

| Stmt                             | Gen                       | Kill                                |
|----------------------------------|---------------------------|-------------------------------------|
| x:=v                             | { <b>v</b> }              | { <b>e</b>   <b>x</b> in <b>e</b> } |
| $x := v_1 \text{ op } v_2$       | $\{v_1 \text{ op } v_2\}$ | {e   x in e}                        |
| x:=*(v+i)                        | {}                        | {e   x in e}                        |
| *(v+i):=x                        | {}                        | {}                                  |
| jump L                           | {}                        | {}                                  |
| return v                         | {}                        | {}                                  |
| if v1 op v2 goto L1 else goto L2 | {}                        | {}                                  |
| $x := v (v_1, \ldots v_n)$       | {}                        | {e   x in e}                        |

•  $D_{in}[L] = \cap \{D_{out}[L'] \mid L' \text{ in } pred[L] \}$ 

• Transfer function for stmt S:  $\lambda D$ . (D  $\cup$  Gen<sub>S</sub>) – Kill<sub>S</sub>

Stephen Chong, Harvard University

## **Reaching Definitions**

- A definition **x**:=**e reaches** a program point *p* if there is some path from the assignment to *p* that contains no other assignment to **x**
- Reaching definitions useful in several optimizations, including constant propagation
- Can also define reaching definitions analysis using gen and kill sets; combine dataflow facts at merge points by **union**

## **Reaching Definitions Analysis**

- Assign a unique id to each definition
- Define *defs*(**x**) to be the set of all definitions of variable **x**

| Stmt                       | Gen   | Kill                           |
|----------------------------|-------|--------------------------------|
| d:x:=v                     | { d } | $defs(\mathbf{x}) = \{ d \}$   |
| $d:x:=v_1 \text{ op } v_2$ | { d } | <i>defs</i> ( <b>x</b> )–{ d } |
| everything else            | Ø     | Ø                              |

- $D_{in}[L] = \cup \{D_{out}[L'] \mid L' \text{ in } pred[L] \}$
- Transfer function for stmt S:  $\lambda D$ . (D  $\cup$  Gen<sub>S</sub>) Kill<sub>S</sub>

#### Liveness

- Variable **x** is **live** at program point *p* is there is a path from *p* to a use of variable **x**
- Liveness useful in dead code elimination and register allocation
- Can also define using gen-kill sets
- However, we use a **backward dataflow analysis** 
  - i.e., instead of flowing facts forwards over statement (computing  $D_{out}$  from  $D_{in}$ ) we flow facts backwards over statements (compute  $D_{in}$  from  $D_{out}$ )

## Liveness Analysis

| Stmt                                                             | Gen                                                                                 | Kill  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|
| x:=v                                                             | { <b>v</b>   if <b>v</b> is variable}                                               | { x } |
| $x := v_1 op v_2$                                                | $\{v_i   i \in 1, 2, v_i \text{ is var}\}$                                          | { x } |
| x:=*(v+i)                                                        | { <b>v</b>   if <b>v</b> is variable}                                               | { x } |
| *(v+i):=x                                                        | $\{\mathbf{x}\} \cup \{\mathbf{v} \mid \text{if } \mathbf{v} \text{ is variable}\}$ | {}    |
| jump L                                                           | {}                                                                                  | {}    |
| return v                                                         | { <b>v</b>   if <b>v</b> is variable}                                               | {}    |
| if v1 op v2 goto L1 else goto L2                                 | $\{v_i   i \in 1, 2, v_i \text{ is var}\}$                                          | {}    |
| $\mathbf{x} := \mathbf{v}_0 (\mathbf{v}_1, \ldots \mathbf{v}_n)$ | $\{\mathbf{v}_i \mid i \in 0n, \mathbf{v}_i \text{ is var}\}$                       | { x } |

• I.e., any use of a variable generates liveness, any definition kills liveness

- $D_{out}[L] = \cup \{D_{in}[L'] \mid L' \text{ in } succ[L] \}$
- Transfer function for stmt S:  $\lambda D$ . ( $D \cup Gen_S$ ) Kill<sub>S</sub>

#### Liveness Example



Stephen Chong, Harvard University

## Very Busy Expressions

- An expression v<sub>1</sub> op v<sub>2</sub> is very busy at program point p if on every path from p, expression v<sub>1</sub>
  op v<sub>2</sub> is evaluated before the value of either v<sub>1</sub>
  or v<sub>2</sub> is changed
- Optimization
  - Can hoist very busy expression computation
- What kind of problem?
  - Forward or backward?
  - May or must?

## Space of data flow analyses

|          | May                     | Must                     |
|----------|-------------------------|--------------------------|
| Forward  | Reaching<br>definitions | Available<br>expressions |
| Backward | Live variables          | Very busy<br>expressions |

• Most dataflow analyses can be categorized in this way

- i.e., forward or backward, may or must
- A few don't fit, need bidrectional flow

#### Many dataflow analyses can be expressed as gen/kill analyses

© 2011 Stephen Chong, Harvard University

## Loop Optimizations

- Vast majority of time spent in loops
- So we want techniques to improve loops!
  - Loop invariant removal
  - Induction variable elimination
  - Loop unrolling
  - Loop fusion
  - Loop fission
  - Loop peeling
  - Loop interchange
  - Loop tiling
  - Loop parallelization
  - Software pipelining

### Example 1: Invariant Removal

L2: x := t

## Example 1: Invariant Removal

L2: x := t

| L0: | i := 0       | s=0;                    |
|-----|--------------|-------------------------|
|     | s := 0       | for (1=0; 1 < 100; 1++) |
|     | jump L2      | s += a[i];              |
| L1: | t1 := i*4    |                         |
|     | t2 := a+t1   |                         |
|     | t3 := *t2    |                         |
|     | s := s + t3  |                         |
|     | i := i+1     |                         |
| L2: | if i < 100 g | oto Ll else goto L3     |
| L3: | • • •        |                         |

| L0: | i := 0                          |
|-----|---------------------------------|
|     | s := 0                          |
|     | jump L2                         |
| L1: | t1 := i*4                       |
|     | t2 := a+t1                      |
|     | t3 := *t2                       |
|     | s := s + t3                     |
|     | i := i+1                        |
| L2: | if i < 100 goto L1 else goto L3 |
| L3: | • • •                           |

L0: 
$$i := 0$$
  
 $s := 0$   
 $t1 := 0$   
jump L2  
L1:  $t2 := a+t1$   
 $t3 := *t2$   
 $s := s + t3$   
 $i := i+1$   
L2:  $if i < 100$  goto L1 else goto L3  
L3: ...

| L0: | i := 0                          |
|-----|---------------------------------|
|     | s := 0                          |
|     | t1 := 0                         |
|     | jump L2                         |
| L1: | t2 := a+t1                      |
|     | t3 := *t2                       |
|     | s := s + t3                     |
|     | i := i+1                        |
|     | t1 := t1+4                      |
| L2: | if i < 100 goto L1 else goto L3 |
| L3: | • • •                           |

L0: i := 0  
s := 0  

$$t1 := 0$$
  
 $t2 := a$   
jump L2  
L1: t3 := \*t2  
s := s + t3  
i := i+1  
 $t2 := t2+4$   
t1 := t1+4  
L2: if i < 100 goto L1 else goto L3  
L3: ...

| L0: | i := 0                          |
|-----|---------------------------------|
|     | s := 0                          |
|     | t1 := 0 $t1 is no$              |
|     | t2 := a longer used!            |
|     | jump L2                         |
| L1: | t3 := *t2                       |
|     | s := s + t3                     |
|     | i := i+1                        |
|     | t2 := t2+4                      |
|     | t1 := t1+4                      |
| L2: | if i < 100 goto L1 else goto L3 |
| L3: | • • •                           |

- L0: i := 0 s := 0
  - t2 := a jump L2
- L1: t3 := \*t2 s := s + t3 i := i+1 t2 := t2+4

L2: if i < 100 goto L1 else goto L3 L3: ...

L1: t3 := \*t2

- s := s + t3 i := i+1
  - t2 := t2+4

i is now used just to
count 100 iterations.
But t2 = 4\*i + a
so i < 100
when
t2 < a+400</pre>

L2: if i < 100 goto L1 else goto L3 L3: ...

| L0: | i := 0         |
|-----|----------------|
|     | s := 0         |
|     | t2 := a        |
|     | t5 := t2 + 400 |
|     | jump L2        |
| L1: | t3 := *t2      |
|     | s := s + t3    |
|     | i := i+1       |
|     | t2 := t2+4     |
|     |                |
|     |                |

i is now used just to count 100 iterations. But t2 = 4 \* i + aso i < 100 when t2 < a+400

#### L2: if t2 < t5 goto L1 else goto L3 L3: ...

L0: s := 0 t2 := a t5 := t2 + 400 jump L2

- L1: t3 := \*t2
  - s := s + t3
    - t2 := t2+4

i is now used just to
count 100 iterations.
But t2 = 4\*i + a
so i < 100
when
t2 < a+400</pre>

#### L2: if t2 < t5 goto L1 else goto L3 L3: ...

## Loop Analysis

- How do we identify loops?
- •What is a loop?
  - Can't just "look" at graphs
  - •We're going to assume some additional structure
- **Definition:** a **loop** is a subset *S* of nodes where:
  - •*S* is strongly connected:
    - For any two nodes in *S*, there is a path from one to the other using only nodes in *S*
  - There is a distinguished header node  $h \in S$  such that there is no edge from a node outside *S* to  $S \setminus \{h\}$

## Examples



## Examples



## Examples



## Non-example

• Consider the following:



- •a can't be header
  - No path from b to a or c to a
- b can't be header
  - Has outside edge from a
- •c can't be header
  - Has outside edge from a
- •So no loop...
- But clearly a cycle!

## Reducible Flow Graphs

- So why did we define loops this way?
- Loop header gives us a "handle" for the loop
  - •e.g., a good spot for hoisting invariant statements
- Structured control-flow only produces reducible graphs
  - a graph where all cycles are loops according to our definition.
  - Java: only reducible graphs
  - •C/C++: goto can produce irreducible graph
- Many analyses & loop optimizations depend upon having reducible graphs

# Finding Loops

- **Definition:** node *d* **dominates** node *n* if every path from the start node to *n* must go through *d*
- **Definition:** an edge from *n* to a dominator *d* is called a **back-edge**
- **Definition:** a **loop** of a back edge  $n \rightarrow d$  is the set of nodes x such that d dominates x and there is a path from x to n not including d
- So to find loops, we figure out dominators, and identify back edges

## Example

- •a dominates a,b,c,d,e,f,g,h
- •b dominates b,c,d,e,f,g,h
- •c dominates c,e
- d dominates d
- •e dominates e
- •f dominates f,g,h
- •g dominates g,h
- •h dominates h
- •back-edges?
  - ∙g→b
  - ∙h→a
- •loops?



## Calculating Dominators

- *D*[*n*] : the set of nodes that dominate *n*
- $D[n] = \{n\} \cup (D[p_1] \cap D[p_2] \cap ... \cap D[p_m])$ where  $pred[n] = \{p_1, p_2, ..., p_m\}$
- It's pretty easy to solve this equation:
  - start off assuming *D*[*n*] is all nodes.
    - except for the start node (which is dominated only by itself)
  - iteratively update *D*[*n*] based on predecessors until you reach a fixed point

## **Representing Dominators**

- Don't actually need to keep set of all dominators for each node
- Instead, construct a dominator tree
  - Insight: if both d and e dominate n, then either d dominates e or vice versa
  - So that means that node *n* has a "closest" or **immediate dominator**

## Example





a dominates a,b,c,d,e,f,g,h b dominates b,c,d,e,f,g,h c dominates c,e d dominates d e dominates e f dominates f,g,h g dominates g,h h dominates h

a dominated by a b dominated by b,a c dominated by c,b,a d dominated by d,b,a e dominated by e,c,b,a f dominated by f,b,a g dominated by g,f,b,a h dominated by h,g,f,b,a

#### Immediate Dominator Tree



## Nested Loops

- If loops A and B have distinct headers and all nodes in B are in A (i.e., B⊆A), then we say B is
   nested within A
- An **inner loop** is a nested loop that doesn't contain any other loops
- •We usually concentrate our attention on nested loops first (since we spend most time in them)