
CS153: Compilers 
Lecture 18: Loop Optimization I 

Stephen Chong 
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153


Stephen Chong, Harvard University

Pre-class Puzzle

•For each of these Control Flow Graphs (CFGs), what is a C program that 
corresponds to it?

 2

A B C

D



Stephen Chong, Harvard University

Announcements

•Project 5 out 
•Due Tuesday Nov 13 (12 days) 

•Project 6 out 
•Due Tuesday Nov 20 (19 days) 

•Project 7 out 
•Due Thursday Nov 29 (28 days)

 3



Stephen Chong, Harvard University

Today

•More dataflow analyses 
•Available expressions 
•Reaching definitions 
•Liveness 

•Loop optimization 
•Examples 
•Identifying loops 
•Dominators

 4



Stephen Chong, Harvard University

Dataflow Analysis

•Last class we saw dataflow analysis for available 
expressions 

•An expression e is available at program point p if 
on all paths from the entry to p, expression e is 
computed at least once, and there are no 
intervening assignment to the free variables of e 
[NOTE: last lecture’s definition corrected] 

•Defined available expression analysis using gen 
and kill sets; combined dataflow facts at merge 
points by intersection

 5



Stephen Chong, Harvard University

Available Expressions Analysis

•Din[L] = ⋂{Dout[L’] | L’ in pred[L] } 

•Transfer function for stmt S: λD. (D ∪ GenS) – 
KillS

 6

Stmt Gen Kill
x:=v { v } {e | x in e}

x:=v1 op v2 {v1 op v2} {e | x in e}
x:=*(v+i) {} {e | x in e}
*(v+i):=x {} {}
jump L {} {}

return v {} {}
if v1 op v2 goto L1 else goto L2 {} {}
x:=v(v1,...vn) {} {e | x in e}



Stephen Chong, Harvard University

Reaching Definitions

•A definition x:=e  reaches a program point p if 
there is some path from the assignment to p that 
contains no other assignment to x 

•Reaching definitions useful in several 
optimizations, including constant propagation 

•Can also define reaching definitions analysis 
using gen and kill sets; combine dataflow facts at 
merge points by union

 7



Stephen Chong, Harvard University

Reaching Definitions Analysis

•Assign a unique id to each definition 

•Define defs(x) to be the set of all definitions of 
variable x

•Din[L] = ∪{Dout[L’] | L’ in pred[L] } 

•Transfer function for stmt S: λD. (D ∪ GenS) – KillS
 8

Stmt Gen Kill
d:x:=v { d } defs(x)–{ d }

d:x:=v1 op v2 { d } defs(x)–{ d }
everything else ∅ ∅



Stephen Chong, Harvard University

Liveness

•Variable x is live at program point p is there is a 
path from p to a use of variable x 

•Liveness useful in dead code elimination and 
register allocation 

•Can also define using gen-kill sets 
•However, we use a backward dataflow analysis 

•i.e., instead of flowing facts forwards over statement 
(computing Dout from Din) we flow facts backwards 
over statements (compute Din from Dout)

 9



Stephen Chong, Harvard University

Liveness Analysis

•I.e., any use of a variable generates liveness, any definition kills liveness 
•Dout[L] = ∪{Din[L’] | L’ in succ[L] } 

•Transfer function for stmt S: λD. (D ∪ GenS) – KillS

 10

Stmt Gen Kill
x:=v { v | if v is variable} { x }

x:=v1 op v2 {vi|i∈1,2, vi is var} { x }
x:=*(v+i) { v | if v is variable} { x }
*(v+i):=x { x } ∪ { v | if v is variable} {}
jump L {} {}

return v { v | if v is variable} {}
if v1 op v2 goto L1 else goto L2 {vi|i∈1,2, vi is var} {}
x:=v0(v1,...vn) {vi|i∈0..n, vi is var} { x }



Stephen Chong, Harvard University

Liveness Example

 11

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b exit

entry

return x

x

x
x, y, a

x, y, a

x, a, b

a, b

x, y, a

y, a, b

y, a, b

x, y, a, b

x, y, a, b

x, y, a, b

x, y, a, b

∅
∅

1.

(Numbers indicate the order that the  
    facts are computed in this example.)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.



Stephen Chong, Harvard University

Very Busy Expressions

•An expression v1 op v2 is very busy at program 
point p if on every path from p, expression v1 
op v2 is evaluated before the value of either v1 
or v2 is changed 

•Optimization 
•Can hoist very busy expression computation 

•What kind of problem? 
•Forward or backward? 
•May or must?

 12



© 2011 Stephen Chong, Harvard University

Space of data flow analyses

• Most dataflow analyses can be categorized in this way 
• i.e., forward or backward, may or must 

•A few don’t fit, need bidrectional flow 

• Many dataflow analyses can be expressed as gen/kill 
analyses

 13

May Must

Forward Reaching 
definitions

Available 
expressions

Backward Live variables Very busy 
expressions



Stephen Chong, Harvard University

Loop Optimizations

•Vast majority of time spent in loops 
•So we want techniques to improve loops! 

•Loop invariant removal 
•Induction variable elimination 
•Loop unrolling 
•Loop fusion 
•Loop fission 
•Loop peeling 
•Loop interchange 
•Loop tiling 
•Loop parallelization 
•Software pipelining

 14



Stephen Chong, Harvard University

Example 1: Invariant Removal

 15

L0:  t := 0

     t := a + b
L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t



Stephen Chong, Harvard University

Example 1: Invariant Removal

 16

L0:  t := 0
     t := a + b

L1:  i := i + 1

     *i := t
     if i<N goto L1 else L2

L2:  x := t



Stephen Chong, Harvard University

Example 2: Induction Variable

 17

L0:  i := 0 
     s := 0 
     jump L2 

s=0;
for (i=0; i < 100; i++) 
  s += a[i];

L1:  t1 := i*4       
     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1
L2:  if i < 100 goto L1 else goto L3
L3:  ...



Stephen Chong, Harvard University

Example 2: Induction Variable

 18

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is always equal 
to i*4 !

     t1 := i*4       
     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     jump L2 



Stephen Chong, Harvard University

Example 2: Induction Variable

 19

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is always equal 
to i*4 !

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 



Stephen Chong, Harvard University

Example 2: Induction Variable

 20

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 



Stephen Chong, Harvard University

Example 2: Induction Variable

 21

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t2 is always equal 
to a+t1 == a+i*4 !

     t2 := a+t1      
     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 



Stephen Chong, Harvard University

Example 2: Induction Variable

 22

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t2 is always equal 
to a+t1 == a+i*4 !

     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
     t2 := a

     t2 := t2+4



Stephen Chong, Harvard University

Example 2: Induction Variable

 23

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

t1 is no 
longer used!

     t3 := *t2
     s  := s + t3
     i  := i+1

     t1 := 0

     t1 := t1+4

     jump L2 
     t2 := a

     t2 := t2+4



Stephen Chong, Harvard University

Example 2: Induction Variable

 24

L0:  i := 0
     s := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

     t3 := *t2
     s  := s + t3
     i  := i+1

     jump L2 
     t2 := a

     t2 := t2+4



Stephen Chong, Harvard University

Example 2: Induction Variable

 25

     i := 0

L1:

L2:  if i < 100 goto L1 else goto L3
L3:  ...

i is now used just to 
count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400
    i  := i+1

     jump L2 
     t2 := a

     t2 := t2+4

     s := 0
L0:

     t3 := *t2
     s  := s + t3



Stephen Chong, Harvard University

Example 2: Induction Variable

 26

     i := 0

L1:

L2:  if t2 < t5 goto L1 else goto L3
L3:  ...

    i  := i+1

     t2 := a

     t2 := t2+4

     s := 0
L0:

     t3 := *t2
     s  := s + t3

     jump L2 
     t5 := t2 + 400 i is now used just to 

count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400



Stephen Chong, Harvard University

Example 2: Induction Variable

 27

L1:

L2:  if t2 < t5 goto L1 else goto L3
L3:  ...

     t2 := a

     t2 := t2+4

     s := 0L0:

     t3 := *t2
     s  := s + t3

     jump L2 
     t5 := t2 + 400

i is now used just to 
count 100 iterations. 
But t2 = 4*i + a 

so i < 100  
when  

t2 < a+400



Stephen Chong, Harvard University

Loop Analysis

•How do we identify loops? 
•What is a loop? 

•Can't just “look” at graphs 
•We're going to assume some additional structure 

•Definition: a loop is a subset S of nodes where: 
•S is strongly connected: 
• For any two nodes in S, there is a path from one to the 
other using only nodes in S 

•There is a distinguished header node h∈S such that 
there is no edge from a node outside S to S\{h}

 28



Stephen Chong, Harvard University

Examples

 29



Stephen Chong, Harvard University

Examples

 30



Stephen Chong, Harvard University

Examples

 31



Stephen Chong, Harvard University

Non-example

•Consider the following: 

•a can’t be header 
•No path from b to a or c to a 

•b can’t be header 
•Has outside edge from a 

•c can’t be header 
•Has outside edge from a 

•So no loop... 
•But clearly a cycle!

 32

a

b c



Stephen Chong, Harvard University

Reducible Flow Graphs

•So why did we define loops this way? 
•Loop header gives us a “handle” for the loop 

•e.g., a good spot for hoisting invariant statements 

•Structured control-flow only produces reducible graphs 
•a graph where all cycles are loops according to our definition. 
•Java: only reducible graphs 
•C/C++: goto can produce irreducible graph 

•Many analyses & loop optimizations depend upon 
having reducible graphs

 33



Stephen Chong, Harvard University

Finding Loops

•Definition: node d dominates node n if every path 
from the start node to n must go through d 

•Definition: an edge from n to a dominator d is 
called a back-edge 

•Definition:  a loop of a back edge n→d is the set 
of nodes x such that d dominates x and there is a 
path from x to n not including d 

•So to find loops, we figure out dominators, and 
identify back edges

 34



Stephen Chong, Harvard University

Example

•a dominates a,b,c,d,e,f,g,h 
•b dominates b,c,d,e,f,g,h 
•c dominates c,e 
•d dominates d 
•e dominates e 
•f dominates  f,g,h 
•g dominates g,h 
•h dominates h 
•back-edges? 

•g→b 

•h→a 

•loops?

 35

a

b

c d

fe

g

h



Stephen Chong, Harvard University

Calculating Dominators

•D[n] :  the set of nodes that dominate n 
•D[n] = {n} ∪ (D[p1] ∩ D[p2] ∩ … ∩ D[pm]) 

           where pred[n] = {p1,p2,…,pm} 
•It's pretty easy to solve this equation: 

•start off assuming D[n] is all nodes.  
• except for the start node (which is dominated only by itself) 

•iteratively update D[n] based on predecessors until you 
reach a fixed point

 36



Stephen Chong, Harvard University

Representing Dominators

•Don’t actually need to keep set of all dominators 
for each node 

•Instead, construct a dominator tree 
•Insight: if both d and e dominate n, then either d 

dominates e or vice versa 
•So that means that node n has a “closest” or 

immediate dominator

 37



Stephen Chong, Harvard University

Example

 38

a

b

c d

fe

g

h

CFG Immediate 
Dominator Tree

a

b

c

fe

d

g

h

a dominates a,b,c,d,e,f,g,h 
b dominates b,c,d,e,f,g,h 
c dominates c,e 
d dominates d 
e dominates e 
f dominates  f,g,h 
g dominates g,h 
h dominates h

a dominated by a 
b dominated by b,a 
c dominated by c,b,a 
d dominated by d,b,a 
e dominated by e,c,b,a 
f dominated by f,b,a 
g dominated by g,f,b,a 
h dominated by h,g,f,b,a



Stephen Chong, Harvard University

Nested Loops

•If loops A and B have distinct headers and all 
nodes in B are in A (i.e., B⊆A), then we say B is 
nested within A 

•An inner loop is a nested loop that doesn’t 
contain any other loops 

•We usually concentrate our attention on nested 
loops first (since we spend most time in them)

 39


