John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 18: Loop Optimization I

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

*For each of these Control Flow Graphs (CFGs), what is a C program that
corresponds to it?

A B ? C @

Stephen Chong, Harvard University 2

Annou

*Project 5 out
e Due Tuesday Nov 13 (12 days)

*Project 6 out
e Due Tuesday Nov 20 (19 days)

*Project 7 out
* Due Thursday Nov 29 (28 days)

Stephen Chong, Harvard University 3

1

* More dataflow analyses
* Available expressions
*Reaching definitions
*Liveness

* Loop optimization
e Examples
e |dentifying loops

e Dominators

Stephen Chong, Harvard University 4

Datatlow Analysis

e | ast class we saw dataflow analysis for available
expressions

* An expression e is available at program point p if
on all paths from the entry to p, expression e is
computed at least once, and there are no

intervening assignment to the free variables of e
[NOTE: last lecture’s definition corrected]

e Defined available expression analysis using gen
and kill sets; combined dataflow facts at merge
points by intersection

Available Expressions Analysis

Stmt Gen Kill
X =V LV} {e | xIne}
X:=Vi Op V2 {vi op V2l {e [xIn e}
Xe=*(v+i) {} e | xXIn e}
* (v+1i) :=x {} {}
jump L {} {J
return v {} {}
if vl op v2 goto L1 else goto L2 {} {}
Xe=V(V1i, e+ .Vn) {} {e | xin e}

® Din[L] = N{Douwt[L."] | L” in pred[L] }
e Transfer function for stmt S: AD. (D u Gengs) —

Kills

Reaching Definitions

* A definition x:=e reaches a program point p if
there is some path from the assignment to p that
contains no other assignment to x

e Reaching definitions useful in several
optimizations, including constant propagation

eCar

usin

also define reaching definitions analysis
g gen and kill sets; combine dataflow facts at

merge points by union

Reaching Detinitions Analysis

* Assign a unique id to each definition

e Define defs(x) to be the set of all definitions of
variable x

Stmt Gen Kill
d:x:=v Id} defs(x)—{ d }
d:x:=vi op v {d]} defs(x)—{ d }

everything else Z Z

* Din[L] = U{Douwt[L."] | L” in pred[L] }
e Transfer function for stmt S: AD. (D u Geng) — Killg

[Liveness

*Variable x is live at program point p is there is a
path from p to a use of variable x

e iveness useful in dead code elimination and
register allocation

e Can also define using gen-kill sets

e However, we use a backward dataflow analysis

°i.e., instead of flowing facts forwards over statement
(computing Dout from Din) we flow facts backwards
over statements (compute Din from Doy

Liveness Analysis

Stmt Gen Kill
X =V { v |if visvariable} { x }
X:=V1i Op V3 {vi|ie1,2, v;is var} { x }
Xe=*(v+1) { v |if visvariable} { x }
*(v+1) : =X {x}u{v|ifvisvariable} 1
jump L {} {J
return v { v |if visvariable} {}
if vl op v2 goto 1 else goto 12| {y;|je1,2, v;is var] n
X:=vVo(Vi, «..Vvn) | {vi|i€0..n, viis var} {x])

*|.e., any use of a variable generates liveness, any definition kills liveness
® Douwt[L] = u{Din[L."] | L” in succ[L] }
e Transfer function for stmt S: AD. (D u Gens) — Kills

LLivenes

% a, b s
X := a + b;
< X,a,b 7.
y := a * b;
14. X,y,a,b > l < X,y,a 6.
13. X, Y, a,Db i § € X, Y, a s,
y a
12. X,y,a,b l X X 4.
< X 3.
11. y, a, b >
a := a + 1; return x

0 . \ o 2.
. Y, d, > D 1.

(Numbers indicate the order that the

facts are computed in this example.)
Stephen Chong, Harvard University 11

o O
<<
\QJ QO
—

\

Very Busy Expressions

* An expression vi op V2 is very busy at program
point p if on every path from p, expression v
op V2 is evaluated before the value of either v;
or v2 is changed

* Optimization
e Can hoist very busy expression computation

*\What kind of problem?

e Forward or backward?
* May or must?

Space of data flow analyses

May Must
Forward Reaching Available
definitions expressions

Very busy

Backward Live variables .
expressions

* Most dataflow analyses can be categorized in this way

e i.e., forward or backward, may or must

e A few don’t fit, need bidrectional flow

* Many dataflow analyses can be expressed as gen/kill
analyses

Loop Opti

e Vast majority of time spent in loops

* So we want techniques to improve loops!

_oop invariant removal

nduction variable elimination

00
00
00
00
00
00

|00

0 unrolling

0 fusion

0 fission

D peeling

0 interchange
0 tiling

0 parallelization

* Software pipelining

Stephen Chong, Harvard University

14

Example 1: Inv

L2:

Stephen Chong, Harvard University

t := 0

1 := 1 + 1

t := a + b

*1 = t

1f 1<N goto L1 else L2
X = t

15

Example 1: Inv

L2:

Stephen Chong, Harvard University

t := 0

t : = a + b

1 := 1 + 1

*1 = t

1f 1<N goto L1 else L2
X = t

16

Example 2: Indu

LO: 1 :=0 s=0;
S := 0 for (1i=0; 1 < 100; 1i++)
jump L2 s += a[i];
Ll: tl1 := 1i*4
t2 := a+tl
t3 := *t2
s = s + t3
1 = i+1

L2: 1f 1 < 100 goto L1 else goto L3
L3:

Stephen Chong, Harvard University 17

Example 2: Induction Variable

LO: 1 := 0
s := 0
jump L2

Ll:| t1 := 1*4
t2 := a+tl
t3 := *t2
S = s + t3
1 = i+1

L2: 1f 1 < 100 goto L1 else goto L3

L3:

-

.)
t1 is always equal

to 1i*4 |

J

Example 2: Induction Variable

LO: 1 :=0

s (=0 - . \

A E— tlis alv.vays equal

: to i*4 !

jump L2 N J
T,1: t2 := a+tl

t3 = *t2

s = s + t3

1 = i+1

tl := tl+4

L2: 1f 1 < 100 goto L1 else goto L3
L3:

Example 2: Ind

LO: 1 ::= 0
s := 0
tl := 0
jump L2
Ll1: t2 := a+tl
t3 = *t2

s := s + t3

1 = 1+1

tl tl1+4
L2: 1f 1 < 100 goto L1 else goto L3
L3:

Stephen Chong, Harvard University 20

Example 2: Induction Variable

LO: 1 := 0
s (=0 - . \
£l sz 0 t2 is always egual
. to attl == a+i*4 !
jump L2 N J
T,1 t2 := a+tl
t3 = *t2
s = s + t3
1 = 1+1
tl := tl1l+4

L2: 1f 1 < 100 goto L1 else goto L3
L3:

Example 2: Induction Variable

LO: 1 :=0
s := 0
tl := 0
t2 := a
jump L2
Ll: t3 := *t2
s = s + t3
1 = 1i+1
t2 := t2+44
tl := tl+4
L2:

L3:

(.
t2 is always equal

kt()a+t1::::a+i*4!

~

J

1f 1 < 100 goto L1 else goto L3

Example 2: Inducti

LO: 1 :=0
s = 0
€l =0 [tlisno
tZ2 := a longer used!
jump L2 - /

Ll: t3 := *t2

s = s + t3

1 = 1+1

t2 := t2+4

tl := tl1+4
L2: 1f 1 < 100 goto L1 else goto L3
L3:

Stephen Chong, Harvard University 23

Example 2: Ind

LO: 1 :=0
s := 0
t2 := a
jump L2
Ll: t3 := *t2
s = s + t3
1 = j+1
t2 := t2+4

L2: 1f 1 < 100 goto L1 else goto L3
L3:

Stephen Chong, Harvard University 24

Example 2: Induction Variable

LO: 1 :=0
s := 0
t2 := a
jump L2
Ll: t3 := *t2
S ce= s + t3
i := 1+l
t2 := t2+4
L2:

L3:

~

-

i is now used just to
count 100 iterations.
Butt2 =4*i + a
sOo1 < 100
when
t2 < a+400

~

_J

1f 1 < 100 goto L1 else goto L3

Example 2: Induction Variable

LO: 1 :=0
s := 0
t2 := a
t5 = t2 + 400
jump L2
Ll: t3 := *t2
S = s + t3
1 = i+1
t2 := t2+4
L2:

L3:

~

-

i is now used just to
count 100 iterations.
Butt2 =4*i + a
sOo1 < 100
when
t2 < a+400

~

_/

1f t2 < t5 goto L1 else goto L3

Example 2: Induction Variable

LO: s := 0
t2 := a
t5 := t2 + 400
jump L2

Ll: t3 := *t2
S ce= s + t3
t2 := t2+44

L2:

L3:

~

-

i is now used just to
count 100 iterations.
Butt2 =4*i + a
sOo1 < 100
when
t2 < a+400

~

_/

1f t2 < t5 goto L1 else goto L3

Loop Analysis

e How do we identify loops?

*\What is a loop?
eCan't just “look” at graphs

*\We're going to assume some additional structure

e Definition: a loop is a subset S of nodes where:

S is strongly connected:

* For any two nodes in S, there is a path from one to the
other using only nodes in S

eThere is a dis

inguished header node he$ such that

there is no ec

ge from a node outsic

e Sto S\{h}

9

Stephen Chong, Harvard University 29

P

Stephen Chong, Harvard University 30

7

Stephen Chong, Harvard University 31

No

e Consider the following:

°a can’t be header
e No path frombtoaorctoa

°b can’t be header
e Has outside edge from a

ec can’t be header
e Has outside edge from a

*So no loop...
eBut clearly a cycle!

Stephen Chong, Harvard University 32

Reducible Flow Graphs

*So why did we define loops this way?

| oop header gives L
ee.g., a good spot for

e Structured control-f

s a “handle” for the loop

noisting invariant statements

ow only produces reducible graphs

ea graph where all cycles are loops according to our definition.

eJava: only reducible graphs

e C/C++: goto can produce irreducible graph

* Many analyses & loop optimizations depend upon
having reducible graphs

Finding Loops

e Definition: node d dominates node n if every path
from the start node to n must go through d

* Definition: an edge from n to a dominator d is

called a back-edge

* Definition: a loop of a back edge n—d is the set
of nodes x such that d dominates x and there is a
path from x to n not including d

*So to find loops, we figure out dominators, and
identify back edges

]3>(¢’

ea dominates a,b,c,d,e,f,g h
b dominates b,c,d,e,f,g,h
ec dominates c,e

d dominates d

ef dominates f,gh
eg dominates g,h
h dominates h e
*back-edges?
og—»b
eh—a

*|oops?

Stephen Chong, Harvard University

eec dominates e e

35

Calculating Dominators

*D[n] : the set of nodes that dominate n

*DIn] ={n} u (Dlp1] n Dlp2] n ... n D[pm])
where pred[n] = {p1,p2,...,pm}

e |t's pretty easy to solve this equation:

estart off assuming DI[n] is all nodes.
« except for the start node (which is dominated only by itself)

eiteratively update D[n] based on predecessors until you
reach a fixed point

Representing Dominators

e Don’t actually need to keep set of all dominators
for each node

* Instead, construct a dominator tree

*Insight: if both d and e dominate n, then either d
dominates e or vice versa

e So that means that node n has a “closest” or
immediate dominator

G.@

Stephen Chong, Harvard University

CFG

Exa

ac
b ©
C O

d o

Immediate
Dominator Tree

ominates a,b,c,d,e,f,g,h
ominates b,c,d,e,f,gh
ominates c,e

ominates d

e QG

ominates e

f dominates f,g,h b

g dominates g,h
h dominates h

ac
b ©
C O

d o

ominated by a
ominated by b,a
ominated by c,b,a
ominated by d,b,a

e QG

f dominated by f,b,a

ominated by e,c,b,a

g dominated by g,f,b,a

h dominated by h,g,f,b,a

38

Nested Loops

e|f loops A and B have distinct headers and all
nodes in B are in A (i.e., BCA), then we say B is

nested within A

* An inner loop is a nested loop that doesn't
contain any other loops

* We usually concentrate our attention on nested
loops first (since we spend most time in them)

